This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Deduce right identity from left inverse and left identity in an associative structure (such as a group). (Contributed by NM, 10-Aug-2013) (Proof shortened by Mario Carneiro, 6-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | grpinva.c | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑥 + 𝑦 ) ∈ 𝐵 ) | |
| grpinva.o | ⊢ ( 𝜑 → 𝑂 ∈ 𝐵 ) | ||
| grpinva.i | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( 𝑂 + 𝑥 ) = 𝑥 ) | ||
| grpinva.a | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( ( 𝑥 + 𝑦 ) + 𝑧 ) = ( 𝑥 + ( 𝑦 + 𝑧 ) ) ) | ||
| grpinva.r | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ∃ 𝑦 ∈ 𝐵 ( 𝑦 + 𝑥 ) = 𝑂 ) | ||
| Assertion | grprida | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( 𝑥 + 𝑂 ) = 𝑥 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpinva.c | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑥 + 𝑦 ) ∈ 𝐵 ) | |
| 2 | grpinva.o | ⊢ ( 𝜑 → 𝑂 ∈ 𝐵 ) | |
| 3 | grpinva.i | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( 𝑂 + 𝑥 ) = 𝑥 ) | |
| 4 | grpinva.a | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( ( 𝑥 + 𝑦 ) + 𝑧 ) = ( 𝑥 + ( 𝑦 + 𝑧 ) ) ) | |
| 5 | grpinva.r | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ∃ 𝑦 ∈ 𝐵 ( 𝑦 + 𝑥 ) = 𝑂 ) | |
| 6 | oveq1 | ⊢ ( 𝑦 = 𝑛 → ( 𝑦 + 𝑥 ) = ( 𝑛 + 𝑥 ) ) | |
| 7 | 6 | eqeq1d | ⊢ ( 𝑦 = 𝑛 → ( ( 𝑦 + 𝑥 ) = 𝑂 ↔ ( 𝑛 + 𝑥 ) = 𝑂 ) ) |
| 8 | 7 | cbvrexvw | ⊢ ( ∃ 𝑦 ∈ 𝐵 ( 𝑦 + 𝑥 ) = 𝑂 ↔ ∃ 𝑛 ∈ 𝐵 ( 𝑛 + 𝑥 ) = 𝑂 ) |
| 9 | 5 8 | sylib | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ∃ 𝑛 ∈ 𝐵 ( 𝑛 + 𝑥 ) = 𝑂 ) |
| 10 | 4 | caovassg | ⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) → ( ( 𝑢 + 𝑣 ) + 𝑤 ) = ( 𝑢 + ( 𝑣 + 𝑤 ) ) ) |
| 11 | 10 | adantlr | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ ( 𝑛 ∈ 𝐵 ∧ ( 𝑛 + 𝑥 ) = 𝑂 ) ) ) ∧ ( 𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) → ( ( 𝑢 + 𝑣 ) + 𝑤 ) = ( 𝑢 + ( 𝑣 + 𝑤 ) ) ) |
| 12 | simprl | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ ( 𝑛 ∈ 𝐵 ∧ ( 𝑛 + 𝑥 ) = 𝑂 ) ) ) → 𝑥 ∈ 𝐵 ) | |
| 13 | simprrl | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ ( 𝑛 ∈ 𝐵 ∧ ( 𝑛 + 𝑥 ) = 𝑂 ) ) ) → 𝑛 ∈ 𝐵 ) | |
| 14 | 11 12 13 12 | caovassd | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ ( 𝑛 ∈ 𝐵 ∧ ( 𝑛 + 𝑥 ) = 𝑂 ) ) ) → ( ( 𝑥 + 𝑛 ) + 𝑥 ) = ( 𝑥 + ( 𝑛 + 𝑥 ) ) ) |
| 15 | simprrr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ ( 𝑛 ∈ 𝐵 ∧ ( 𝑛 + 𝑥 ) = 𝑂 ) ) ) → ( 𝑛 + 𝑥 ) = 𝑂 ) | |
| 16 | 1 2 3 4 5 12 13 15 | grpinva | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ ( 𝑛 ∈ 𝐵 ∧ ( 𝑛 + 𝑥 ) = 𝑂 ) ) ) → ( 𝑥 + 𝑛 ) = 𝑂 ) |
| 17 | 16 | oveq1d | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ ( 𝑛 ∈ 𝐵 ∧ ( 𝑛 + 𝑥 ) = 𝑂 ) ) ) → ( ( 𝑥 + 𝑛 ) + 𝑥 ) = ( 𝑂 + 𝑥 ) ) |
| 18 | 15 | oveq2d | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ ( 𝑛 ∈ 𝐵 ∧ ( 𝑛 + 𝑥 ) = 𝑂 ) ) ) → ( 𝑥 + ( 𝑛 + 𝑥 ) ) = ( 𝑥 + 𝑂 ) ) |
| 19 | 14 17 18 | 3eqtr3d | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ ( 𝑛 ∈ 𝐵 ∧ ( 𝑛 + 𝑥 ) = 𝑂 ) ) ) → ( 𝑂 + 𝑥 ) = ( 𝑥 + 𝑂 ) ) |
| 20 | 19 | anassrs | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑛 ∈ 𝐵 ∧ ( 𝑛 + 𝑥 ) = 𝑂 ) ) → ( 𝑂 + 𝑥 ) = ( 𝑥 + 𝑂 ) ) |
| 21 | 9 20 | rexlimddv | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( 𝑂 + 𝑥 ) = ( 𝑥 + 𝑂 ) ) |
| 22 | 21 3 | eqtr3d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( 𝑥 + 𝑂 ) = 𝑥 ) |