This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Deduce right inverse from left inverse and left identity in an associative structure (such as a group). (Contributed by NM, 10-Aug-2013) (Proof shortened by Mario Carneiro, 6-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | grpinva.c | |- ( ( ph /\ x e. B /\ y e. B ) -> ( x .+ y ) e. B ) |
|
| grpinva.o | |- ( ph -> O e. B ) |
||
| grpinva.i | |- ( ( ph /\ x e. B ) -> ( O .+ x ) = x ) |
||
| grpinva.a | |- ( ( ph /\ ( x e. B /\ y e. B /\ z e. B ) ) -> ( ( x .+ y ) .+ z ) = ( x .+ ( y .+ z ) ) ) |
||
| grpinva.r | |- ( ( ph /\ x e. B ) -> E. y e. B ( y .+ x ) = O ) |
||
| grpinva.x | |- ( ( ph /\ ps ) -> X e. B ) |
||
| grpinva.n | |- ( ( ph /\ ps ) -> N e. B ) |
||
| grpinva.e | |- ( ( ph /\ ps ) -> ( N .+ X ) = O ) |
||
| Assertion | grpinva | |- ( ( ph /\ ps ) -> ( X .+ N ) = O ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpinva.c | |- ( ( ph /\ x e. B /\ y e. B ) -> ( x .+ y ) e. B ) |
|
| 2 | grpinva.o | |- ( ph -> O e. B ) |
|
| 3 | grpinva.i | |- ( ( ph /\ x e. B ) -> ( O .+ x ) = x ) |
|
| 4 | grpinva.a | |- ( ( ph /\ ( x e. B /\ y e. B /\ z e. B ) ) -> ( ( x .+ y ) .+ z ) = ( x .+ ( y .+ z ) ) ) |
|
| 5 | grpinva.r | |- ( ( ph /\ x e. B ) -> E. y e. B ( y .+ x ) = O ) |
|
| 6 | grpinva.x | |- ( ( ph /\ ps ) -> X e. B ) |
|
| 7 | grpinva.n | |- ( ( ph /\ ps ) -> N e. B ) |
|
| 8 | grpinva.e | |- ( ( ph /\ ps ) -> ( N .+ X ) = O ) |
|
| 9 | 1 | 3expb | |- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( x .+ y ) e. B ) |
| 10 | 9 | caovclg | |- ( ( ph /\ ( u e. B /\ v e. B ) ) -> ( u .+ v ) e. B ) |
| 11 | 10 | adantlr | |- ( ( ( ph /\ ps ) /\ ( u e. B /\ v e. B ) ) -> ( u .+ v ) e. B ) |
| 12 | 11 6 7 | caovcld | |- ( ( ph /\ ps ) -> ( X .+ N ) e. B ) |
| 13 | 4 | caovassg | |- ( ( ph /\ ( u e. B /\ v e. B /\ w e. B ) ) -> ( ( u .+ v ) .+ w ) = ( u .+ ( v .+ w ) ) ) |
| 14 | 13 | adantlr | |- ( ( ( ph /\ ps ) /\ ( u e. B /\ v e. B /\ w e. B ) ) -> ( ( u .+ v ) .+ w ) = ( u .+ ( v .+ w ) ) ) |
| 15 | 14 6 7 12 | caovassd | |- ( ( ph /\ ps ) -> ( ( X .+ N ) .+ ( X .+ N ) ) = ( X .+ ( N .+ ( X .+ N ) ) ) ) |
| 16 | 8 | oveq1d | |- ( ( ph /\ ps ) -> ( ( N .+ X ) .+ N ) = ( O .+ N ) ) |
| 17 | 14 7 6 7 | caovassd | |- ( ( ph /\ ps ) -> ( ( N .+ X ) .+ N ) = ( N .+ ( X .+ N ) ) ) |
| 18 | oveq2 | |- ( y = N -> ( O .+ y ) = ( O .+ N ) ) |
|
| 19 | id | |- ( y = N -> y = N ) |
|
| 20 | 18 19 | eqeq12d | |- ( y = N -> ( ( O .+ y ) = y <-> ( O .+ N ) = N ) ) |
| 21 | 3 | ralrimiva | |- ( ph -> A. x e. B ( O .+ x ) = x ) |
| 22 | oveq2 | |- ( x = y -> ( O .+ x ) = ( O .+ y ) ) |
|
| 23 | id | |- ( x = y -> x = y ) |
|
| 24 | 22 23 | eqeq12d | |- ( x = y -> ( ( O .+ x ) = x <-> ( O .+ y ) = y ) ) |
| 25 | 24 | cbvralvw | |- ( A. x e. B ( O .+ x ) = x <-> A. y e. B ( O .+ y ) = y ) |
| 26 | 21 25 | sylib | |- ( ph -> A. y e. B ( O .+ y ) = y ) |
| 27 | 26 | adantr | |- ( ( ph /\ ps ) -> A. y e. B ( O .+ y ) = y ) |
| 28 | 20 27 7 | rspcdva | |- ( ( ph /\ ps ) -> ( O .+ N ) = N ) |
| 29 | 16 17 28 | 3eqtr3d | |- ( ( ph /\ ps ) -> ( N .+ ( X .+ N ) ) = N ) |
| 30 | 29 | oveq2d | |- ( ( ph /\ ps ) -> ( X .+ ( N .+ ( X .+ N ) ) ) = ( X .+ N ) ) |
| 31 | 15 30 | eqtrd | |- ( ( ph /\ ps ) -> ( ( X .+ N ) .+ ( X .+ N ) ) = ( X .+ N ) ) |
| 32 | 1 2 3 4 5 12 31 | grpinvalem | |- ( ( ph /\ ps ) -> ( X .+ N ) = O ) |