This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Deduce right identity from left inverse and left identity in an associative structure (such as a group). (Contributed by NM, 10-Aug-2013) (Proof shortened by Mario Carneiro, 6-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | grpinva.c | ||
| grpinva.o | |||
| grpinva.i | |||
| grpinva.a | |||
| grpinva.r | |||
| Assertion | grprida |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpinva.c | ||
| 2 | grpinva.o | ||
| 3 | grpinva.i | ||
| 4 | grpinva.a | ||
| 5 | grpinva.r | ||
| 6 | oveq1 | ||
| 7 | 6 | eqeq1d | |
| 8 | 7 | cbvrexvw | |
| 9 | 5 8 | sylib | |
| 10 | 4 | caovassg | |
| 11 | 10 | adantlr | |
| 12 | simprl | ||
| 13 | simprrl | ||
| 14 | 11 12 13 12 | caovassd | |
| 15 | simprrr | ||
| 16 | 1 2 3 4 5 12 13 15 | grpinva | |
| 17 | 16 | oveq1d | |
| 18 | 15 | oveq2d | |
| 19 | 14 17 18 | 3eqtr3d | |
| 20 | 19 | anassrs | |
| 21 | 9 20 | rexlimddv | |
| 22 | 21 3 | eqtr3d |