This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two group elements are equal iff their quotient is the identity. (Contributed by Jeff Madsen, 6-Jan-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | grpeqdivid.1 | |- X = ran G |
|
| grpeqdivid.2 | |- U = ( GId ` G ) |
||
| grpeqdivid.3 | |- D = ( /g ` G ) |
||
| Assertion | grpoeqdivid | |- ( ( G e. GrpOp /\ A e. X /\ B e. X ) -> ( A = B <-> ( A D B ) = U ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpeqdivid.1 | |- X = ran G |
|
| 2 | grpeqdivid.2 | |- U = ( GId ` G ) |
|
| 3 | grpeqdivid.3 | |- D = ( /g ` G ) |
|
| 4 | 1 3 2 | grpodivid | |- ( ( G e. GrpOp /\ B e. X ) -> ( B D B ) = U ) |
| 5 | 4 | 3adant2 | |- ( ( G e. GrpOp /\ A e. X /\ B e. X ) -> ( B D B ) = U ) |
| 6 | oveq1 | |- ( A = B -> ( A D B ) = ( B D B ) ) |
|
| 7 | 6 | eqeq1d | |- ( A = B -> ( ( A D B ) = U <-> ( B D B ) = U ) ) |
| 8 | 5 7 | syl5ibrcom | |- ( ( G e. GrpOp /\ A e. X /\ B e. X ) -> ( A = B -> ( A D B ) = U ) ) |
| 9 | oveq1 | |- ( ( A D B ) = U -> ( ( A D B ) G B ) = ( U G B ) ) |
|
| 10 | 1 3 | grponpcan | |- ( ( G e. GrpOp /\ A e. X /\ B e. X ) -> ( ( A D B ) G B ) = A ) |
| 11 | 1 2 | grpolid | |- ( ( G e. GrpOp /\ B e. X ) -> ( U G B ) = B ) |
| 12 | 11 | 3adant2 | |- ( ( G e. GrpOp /\ A e. X /\ B e. X ) -> ( U G B ) = B ) |
| 13 | 10 12 | eqeq12d | |- ( ( G e. GrpOp /\ A e. X /\ B e. X ) -> ( ( ( A D B ) G B ) = ( U G B ) <-> A = B ) ) |
| 14 | 9 13 | imbitrid | |- ( ( G e. GrpOp /\ A e. X /\ B e. X ) -> ( ( A D B ) = U -> A = B ) ) |
| 15 | 8 14 | impbid | |- ( ( G e. GrpOp /\ A e. X /\ B e. X ) -> ( A = B <-> ( A D B ) = U ) ) |