This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Obsolete version of ghmid as of 15-Mar-2020. A group homomorphism maps identity element to identity element. (Contributed by Paul Chapman, 3-Mar-2008) (New usage is discouraged.) (Proof modification is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ghomidOLD.1 | |- U = ( GId ` G ) |
|
| ghomidOLD.2 | |- T = ( GId ` H ) |
||
| Assertion | ghomidOLD | |- ( ( G e. GrpOp /\ H e. GrpOp /\ F e. ( G GrpOpHom H ) ) -> ( F ` U ) = T ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ghomidOLD.1 | |- U = ( GId ` G ) |
|
| 2 | ghomidOLD.2 | |- T = ( GId ` H ) |
|
| 3 | eqid | |- ran G = ran G |
|
| 4 | 3 1 | grpoidcl | |- ( G e. GrpOp -> U e. ran G ) |
| 5 | 4 | 3ad2ant1 | |- ( ( G e. GrpOp /\ H e. GrpOp /\ F e. ( G GrpOpHom H ) ) -> U e. ran G ) |
| 6 | 5 5 | jca | |- ( ( G e. GrpOp /\ H e. GrpOp /\ F e. ( G GrpOpHom H ) ) -> ( U e. ran G /\ U e. ran G ) ) |
| 7 | 3 | ghomlinOLD | |- ( ( ( G e. GrpOp /\ H e. GrpOp /\ F e. ( G GrpOpHom H ) ) /\ ( U e. ran G /\ U e. ran G ) ) -> ( ( F ` U ) H ( F ` U ) ) = ( F ` ( U G U ) ) ) |
| 8 | 6 7 | mpdan | |- ( ( G e. GrpOp /\ H e. GrpOp /\ F e. ( G GrpOpHom H ) ) -> ( ( F ` U ) H ( F ` U ) ) = ( F ` ( U G U ) ) ) |
| 9 | 3 1 | grpolid | |- ( ( G e. GrpOp /\ U e. ran G ) -> ( U G U ) = U ) |
| 10 | 4 9 | mpdan | |- ( G e. GrpOp -> ( U G U ) = U ) |
| 11 | 10 | fveq2d | |- ( G e. GrpOp -> ( F ` ( U G U ) ) = ( F ` U ) ) |
| 12 | 11 | 3ad2ant1 | |- ( ( G e. GrpOp /\ H e. GrpOp /\ F e. ( G GrpOpHom H ) ) -> ( F ` ( U G U ) ) = ( F ` U ) ) |
| 13 | 8 12 | eqtrd | |- ( ( G e. GrpOp /\ H e. GrpOp /\ F e. ( G GrpOpHom H ) ) -> ( ( F ` U ) H ( F ` U ) ) = ( F ` U ) ) |
| 14 | eqid | |- ran H = ran H |
|
| 15 | 3 14 | elghomOLD | |- ( ( G e. GrpOp /\ H e. GrpOp ) -> ( F e. ( G GrpOpHom H ) <-> ( F : ran G --> ran H /\ A. x e. ran G A. y e. ran G ( ( F ` x ) H ( F ` y ) ) = ( F ` ( x G y ) ) ) ) ) |
| 16 | 15 | biimp3a | |- ( ( G e. GrpOp /\ H e. GrpOp /\ F e. ( G GrpOpHom H ) ) -> ( F : ran G --> ran H /\ A. x e. ran G A. y e. ran G ( ( F ` x ) H ( F ` y ) ) = ( F ` ( x G y ) ) ) ) |
| 17 | 16 | simpld | |- ( ( G e. GrpOp /\ H e. GrpOp /\ F e. ( G GrpOpHom H ) ) -> F : ran G --> ran H ) |
| 18 | 17 5 | ffvelcdmd | |- ( ( G e. GrpOp /\ H e. GrpOp /\ F e. ( G GrpOpHom H ) ) -> ( F ` U ) e. ran H ) |
| 19 | 14 2 | grpoid | |- ( ( H e. GrpOp /\ ( F ` U ) e. ran H ) -> ( ( F ` U ) = T <-> ( ( F ` U ) H ( F ` U ) ) = ( F ` U ) ) ) |
| 20 | 19 | ex | |- ( H e. GrpOp -> ( ( F ` U ) e. ran H -> ( ( F ` U ) = T <-> ( ( F ` U ) H ( F ` U ) ) = ( F ` U ) ) ) ) |
| 21 | 20 | 3ad2ant2 | |- ( ( G e. GrpOp /\ H e. GrpOp /\ F e. ( G GrpOpHom H ) ) -> ( ( F ` U ) e. ran H -> ( ( F ` U ) = T <-> ( ( F ` U ) H ( F ` U ) ) = ( F ` U ) ) ) ) |
| 22 | 18 21 | mpd | |- ( ( G e. GrpOp /\ H e. GrpOp /\ F e. ( G GrpOpHom H ) ) -> ( ( F ` U ) = T <-> ( ( F ` U ) H ( F ` U ) ) = ( F ` U ) ) ) |
| 23 | 13 22 | mpbird | |- ( ( G e. GrpOp /\ H e. GrpOp /\ F e. ( G GrpOpHom H ) ) -> ( F ` U ) = T ) |