This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Group homomorphisms preserve division. (Contributed by Jeff Madsen, 16-Jun-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ghomdiv.1 | |- X = ran G |
|
| ghomdiv.2 | |- D = ( /g ` G ) |
||
| ghomdiv.3 | |- C = ( /g ` H ) |
||
| Assertion | ghomdiv | |- ( ( ( G e. GrpOp /\ H e. GrpOp /\ F e. ( G GrpOpHom H ) ) /\ ( A e. X /\ B e. X ) ) -> ( F ` ( A D B ) ) = ( ( F ` A ) C ( F ` B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ghomdiv.1 | |- X = ran G |
|
| 2 | ghomdiv.2 | |- D = ( /g ` G ) |
|
| 3 | ghomdiv.3 | |- C = ( /g ` H ) |
|
| 4 | simpl2 | |- ( ( ( G e. GrpOp /\ H e. GrpOp /\ F e. ( G GrpOpHom H ) ) /\ ( A e. X /\ B e. X ) ) -> H e. GrpOp ) |
|
| 5 | eqid | |- ran H = ran H |
|
| 6 | 1 5 | ghomf | |- ( ( G e. GrpOp /\ H e. GrpOp /\ F e. ( G GrpOpHom H ) ) -> F : X --> ran H ) |
| 7 | 6 | ffvelcdmda | |- ( ( ( G e. GrpOp /\ H e. GrpOp /\ F e. ( G GrpOpHom H ) ) /\ A e. X ) -> ( F ` A ) e. ran H ) |
| 8 | 7 | adantrr | |- ( ( ( G e. GrpOp /\ H e. GrpOp /\ F e. ( G GrpOpHom H ) ) /\ ( A e. X /\ B e. X ) ) -> ( F ` A ) e. ran H ) |
| 9 | 6 | ffvelcdmda | |- ( ( ( G e. GrpOp /\ H e. GrpOp /\ F e. ( G GrpOpHom H ) ) /\ B e. X ) -> ( F ` B ) e. ran H ) |
| 10 | 9 | adantrl | |- ( ( ( G e. GrpOp /\ H e. GrpOp /\ F e. ( G GrpOpHom H ) ) /\ ( A e. X /\ B e. X ) ) -> ( F ` B ) e. ran H ) |
| 11 | 5 3 | grponpcan | |- ( ( H e. GrpOp /\ ( F ` A ) e. ran H /\ ( F ` B ) e. ran H ) -> ( ( ( F ` A ) C ( F ` B ) ) H ( F ` B ) ) = ( F ` A ) ) |
| 12 | 4 8 10 11 | syl3anc | |- ( ( ( G e. GrpOp /\ H e. GrpOp /\ F e. ( G GrpOpHom H ) ) /\ ( A e. X /\ B e. X ) ) -> ( ( ( F ` A ) C ( F ` B ) ) H ( F ` B ) ) = ( F ` A ) ) |
| 13 | 1 2 | grponpcan | |- ( ( G e. GrpOp /\ A e. X /\ B e. X ) -> ( ( A D B ) G B ) = A ) |
| 14 | 13 | 3expb | |- ( ( G e. GrpOp /\ ( A e. X /\ B e. X ) ) -> ( ( A D B ) G B ) = A ) |
| 15 | 14 | 3ad2antl1 | |- ( ( ( G e. GrpOp /\ H e. GrpOp /\ F e. ( G GrpOpHom H ) ) /\ ( A e. X /\ B e. X ) ) -> ( ( A D B ) G B ) = A ) |
| 16 | 15 | fveq2d | |- ( ( ( G e. GrpOp /\ H e. GrpOp /\ F e. ( G GrpOpHom H ) ) /\ ( A e. X /\ B e. X ) ) -> ( F ` ( ( A D B ) G B ) ) = ( F ` A ) ) |
| 17 | 1 2 | grpodivcl | |- ( ( G e. GrpOp /\ A e. X /\ B e. X ) -> ( A D B ) e. X ) |
| 18 | 17 | 3expb | |- ( ( G e. GrpOp /\ ( A e. X /\ B e. X ) ) -> ( A D B ) e. X ) |
| 19 | simprr | |- ( ( G e. GrpOp /\ ( A e. X /\ B e. X ) ) -> B e. X ) |
|
| 20 | 18 19 | jca | |- ( ( G e. GrpOp /\ ( A e. X /\ B e. X ) ) -> ( ( A D B ) e. X /\ B e. X ) ) |
| 21 | 20 | 3ad2antl1 | |- ( ( ( G e. GrpOp /\ H e. GrpOp /\ F e. ( G GrpOpHom H ) ) /\ ( A e. X /\ B e. X ) ) -> ( ( A D B ) e. X /\ B e. X ) ) |
| 22 | 1 | ghomlinOLD | |- ( ( ( G e. GrpOp /\ H e. GrpOp /\ F e. ( G GrpOpHom H ) ) /\ ( ( A D B ) e. X /\ B e. X ) ) -> ( ( F ` ( A D B ) ) H ( F ` B ) ) = ( F ` ( ( A D B ) G B ) ) ) |
| 23 | 22 | eqcomd | |- ( ( ( G e. GrpOp /\ H e. GrpOp /\ F e. ( G GrpOpHom H ) ) /\ ( ( A D B ) e. X /\ B e. X ) ) -> ( F ` ( ( A D B ) G B ) ) = ( ( F ` ( A D B ) ) H ( F ` B ) ) ) |
| 24 | 21 23 | syldan | |- ( ( ( G e. GrpOp /\ H e. GrpOp /\ F e. ( G GrpOpHom H ) ) /\ ( A e. X /\ B e. X ) ) -> ( F ` ( ( A D B ) G B ) ) = ( ( F ` ( A D B ) ) H ( F ` B ) ) ) |
| 25 | 12 16 24 | 3eqtr2rd | |- ( ( ( G e. GrpOp /\ H e. GrpOp /\ F e. ( G GrpOpHom H ) ) /\ ( A e. X /\ B e. X ) ) -> ( ( F ` ( A D B ) ) H ( F ` B ) ) = ( ( ( F ` A ) C ( F ` B ) ) H ( F ` B ) ) ) |
| 26 | 18 | 3ad2antl1 | |- ( ( ( G e. GrpOp /\ H e. GrpOp /\ F e. ( G GrpOpHom H ) ) /\ ( A e. X /\ B e. X ) ) -> ( A D B ) e. X ) |
| 27 | 6 | ffvelcdmda | |- ( ( ( G e. GrpOp /\ H e. GrpOp /\ F e. ( G GrpOpHom H ) ) /\ ( A D B ) e. X ) -> ( F ` ( A D B ) ) e. ran H ) |
| 28 | 26 27 | syldan | |- ( ( ( G e. GrpOp /\ H e. GrpOp /\ F e. ( G GrpOpHom H ) ) /\ ( A e. X /\ B e. X ) ) -> ( F ` ( A D B ) ) e. ran H ) |
| 29 | 5 3 | grpodivcl | |- ( ( H e. GrpOp /\ ( F ` A ) e. ran H /\ ( F ` B ) e. ran H ) -> ( ( F ` A ) C ( F ` B ) ) e. ran H ) |
| 30 | 4 8 10 29 | syl3anc | |- ( ( ( G e. GrpOp /\ H e. GrpOp /\ F e. ( G GrpOpHom H ) ) /\ ( A e. X /\ B e. X ) ) -> ( ( F ` A ) C ( F ` B ) ) e. ran H ) |
| 31 | 5 | grporcan | |- ( ( H e. GrpOp /\ ( ( F ` ( A D B ) ) e. ran H /\ ( ( F ` A ) C ( F ` B ) ) e. ran H /\ ( F ` B ) e. ran H ) ) -> ( ( ( F ` ( A D B ) ) H ( F ` B ) ) = ( ( ( F ` A ) C ( F ` B ) ) H ( F ` B ) ) <-> ( F ` ( A D B ) ) = ( ( F ` A ) C ( F ` B ) ) ) ) |
| 32 | 4 28 30 10 31 | syl13anc | |- ( ( ( G e. GrpOp /\ H e. GrpOp /\ F e. ( G GrpOpHom H ) ) /\ ( A e. X /\ B e. X ) ) -> ( ( ( F ` ( A D B ) ) H ( F ` B ) ) = ( ( ( F ` A ) C ( F ` B ) ) H ( F ` B ) ) <-> ( F ` ( A D B ) ) = ( ( F ` A ) C ( F ` B ) ) ) ) |
| 33 | 25 32 | mpbid | |- ( ( ( G e. GrpOp /\ H e. GrpOp /\ F e. ( G GrpOpHom H ) ) /\ ( A e. X /\ B e. X ) ) -> ( F ` ( A D B ) ) = ( ( F ` A ) C ( F ` B ) ) ) |