This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Double inverse law for groups. Lemma 2.2.1(c) of Herstein p. 55. (Contributed by NM, 27-Oct-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | grpasscan1.1 | |- X = ran G |
|
| grpasscan1.2 | |- N = ( inv ` G ) |
||
| Assertion | grpo2inv | |- ( ( G e. GrpOp /\ A e. X ) -> ( N ` ( N ` A ) ) = A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpasscan1.1 | |- X = ran G |
|
| 2 | grpasscan1.2 | |- N = ( inv ` G ) |
|
| 3 | 1 2 | grpoinvcl | |- ( ( G e. GrpOp /\ A e. X ) -> ( N ` A ) e. X ) |
| 4 | eqid | |- ( GId ` G ) = ( GId ` G ) |
|
| 5 | 1 4 2 | grporinv | |- ( ( G e. GrpOp /\ ( N ` A ) e. X ) -> ( ( N ` A ) G ( N ` ( N ` A ) ) ) = ( GId ` G ) ) |
| 6 | 3 5 | syldan | |- ( ( G e. GrpOp /\ A e. X ) -> ( ( N ` A ) G ( N ` ( N ` A ) ) ) = ( GId ` G ) ) |
| 7 | 1 4 2 | grpolinv | |- ( ( G e. GrpOp /\ A e. X ) -> ( ( N ` A ) G A ) = ( GId ` G ) ) |
| 8 | 6 7 | eqtr4d | |- ( ( G e. GrpOp /\ A e. X ) -> ( ( N ` A ) G ( N ` ( N ` A ) ) ) = ( ( N ` A ) G A ) ) |
| 9 | 1 2 | grpoinvcl | |- ( ( G e. GrpOp /\ ( N ` A ) e. X ) -> ( N ` ( N ` A ) ) e. X ) |
| 10 | 3 9 | syldan | |- ( ( G e. GrpOp /\ A e. X ) -> ( N ` ( N ` A ) ) e. X ) |
| 11 | simpr | |- ( ( G e. GrpOp /\ A e. X ) -> A e. X ) |
|
| 12 | 10 11 3 | 3jca | |- ( ( G e. GrpOp /\ A e. X ) -> ( ( N ` ( N ` A ) ) e. X /\ A e. X /\ ( N ` A ) e. X ) ) |
| 13 | 1 | grpolcan | |- ( ( G e. GrpOp /\ ( ( N ` ( N ` A ) ) e. X /\ A e. X /\ ( N ` A ) e. X ) ) -> ( ( ( N ` A ) G ( N ` ( N ` A ) ) ) = ( ( N ` A ) G A ) <-> ( N ` ( N ` A ) ) = A ) ) |
| 14 | 12 13 | syldan | |- ( ( G e. GrpOp /\ A e. X ) -> ( ( ( N ` A ) G ( N ` ( N ` A ) ) ) = ( ( N ` A ) G A ) <-> ( N ` ( N ` A ) ) = A ) ) |
| 15 | 8 14 | mpbid | |- ( ( G e. GrpOp /\ A e. X ) -> ( N ` ( N ` A ) ) = A ) |