This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Mapping for group division. (Contributed by NM, 10-Apr-2008) (Revised by Mario Carneiro, 15-Dec-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | grpdivf.1 | |- X = ran G |
|
| grpdivf.3 | |- D = ( /g ` G ) |
||
| Assertion | grpodivf | |- ( G e. GrpOp -> D : ( X X. X ) --> X ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpdivf.1 | |- X = ran G |
|
| 2 | grpdivf.3 | |- D = ( /g ` G ) |
|
| 3 | eqid | |- ( inv ` G ) = ( inv ` G ) |
|
| 4 | 1 3 | grpoinvcl | |- ( ( G e. GrpOp /\ y e. X ) -> ( ( inv ` G ) ` y ) e. X ) |
| 5 | 4 | 3adant2 | |- ( ( G e. GrpOp /\ x e. X /\ y e. X ) -> ( ( inv ` G ) ` y ) e. X ) |
| 6 | 1 | grpocl | |- ( ( G e. GrpOp /\ x e. X /\ ( ( inv ` G ) ` y ) e. X ) -> ( x G ( ( inv ` G ) ` y ) ) e. X ) |
| 7 | 5 6 | syld3an3 | |- ( ( G e. GrpOp /\ x e. X /\ y e. X ) -> ( x G ( ( inv ` G ) ` y ) ) e. X ) |
| 8 | 7 | 3expib | |- ( G e. GrpOp -> ( ( x e. X /\ y e. X ) -> ( x G ( ( inv ` G ) ` y ) ) e. X ) ) |
| 9 | 8 | ralrimivv | |- ( G e. GrpOp -> A. x e. X A. y e. X ( x G ( ( inv ` G ) ` y ) ) e. X ) |
| 10 | eqid | |- ( x e. X , y e. X |-> ( x G ( ( inv ` G ) ` y ) ) ) = ( x e. X , y e. X |-> ( x G ( ( inv ` G ) ` y ) ) ) |
|
| 11 | 10 | fmpo | |- ( A. x e. X A. y e. X ( x G ( ( inv ` G ) ` y ) ) e. X <-> ( x e. X , y e. X |-> ( x G ( ( inv ` G ) ` y ) ) ) : ( X X. X ) --> X ) |
| 12 | 9 11 | sylib | |- ( G e. GrpOp -> ( x e. X , y e. X |-> ( x G ( ( inv ` G ) ` y ) ) ) : ( X X. X ) --> X ) |
| 13 | 1 3 2 | grpodivfval | |- ( G e. GrpOp -> D = ( x e. X , y e. X |-> ( x G ( ( inv ` G ) ` y ) ) ) ) |
| 14 | 13 | feq1d | |- ( G e. GrpOp -> ( D : ( X X. X ) --> X <-> ( x e. X , y e. X |-> ( x G ( ( inv ` G ) ` y ) ) ) : ( X X. X ) --> X ) ) |
| 15 | 12 14 | mpbird | |- ( G e. GrpOp -> D : ( X X. X ) --> X ) |