This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Group division (or subtraction) operation value. (Contributed by NM, 15-Feb-2008) (Revised by Mario Carneiro, 15-Dec-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | grpdiv.1 | |- X = ran G |
|
| grpdiv.2 | |- N = ( inv ` G ) |
||
| grpdiv.3 | |- D = ( /g ` G ) |
||
| Assertion | grpodivval | |- ( ( G e. GrpOp /\ A e. X /\ B e. X ) -> ( A D B ) = ( A G ( N ` B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpdiv.1 | |- X = ran G |
|
| 2 | grpdiv.2 | |- N = ( inv ` G ) |
|
| 3 | grpdiv.3 | |- D = ( /g ` G ) |
|
| 4 | 1 2 3 | grpodivfval | |- ( G e. GrpOp -> D = ( x e. X , y e. X |-> ( x G ( N ` y ) ) ) ) |
| 5 | 4 | oveqd | |- ( G e. GrpOp -> ( A D B ) = ( A ( x e. X , y e. X |-> ( x G ( N ` y ) ) ) B ) ) |
| 6 | oveq1 | |- ( x = A -> ( x G ( N ` y ) ) = ( A G ( N ` y ) ) ) |
|
| 7 | fveq2 | |- ( y = B -> ( N ` y ) = ( N ` B ) ) |
|
| 8 | 7 | oveq2d | |- ( y = B -> ( A G ( N ` y ) ) = ( A G ( N ` B ) ) ) |
| 9 | eqid | |- ( x e. X , y e. X |-> ( x G ( N ` y ) ) ) = ( x e. X , y e. X |-> ( x G ( N ` y ) ) ) |
|
| 10 | ovex | |- ( A G ( N ` B ) ) e. _V |
|
| 11 | 6 8 9 10 | ovmpo | |- ( ( A e. X /\ B e. X ) -> ( A ( x e. X , y e. X |-> ( x G ( N ` y ) ) ) B ) = ( A G ( N ` B ) ) ) |
| 12 | 5 11 | sylan9eq | |- ( ( G e. GrpOp /\ ( A e. X /\ B e. X ) ) -> ( A D B ) = ( A G ( N ` B ) ) ) |
| 13 | 12 | 3impb | |- ( ( G e. GrpOp /\ A e. X /\ B e. X ) -> ( A D B ) = ( A G ( N ` B ) ) ) |