This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A group element's inverse is a group element. (Contributed by NM, 27-Oct-2006) (Revised by Mario Carneiro, 15-Dec-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | grpinvcl.1 | |- X = ran G |
|
| grpinvcl.2 | |- N = ( inv ` G ) |
||
| Assertion | grpoinvcl | |- ( ( G e. GrpOp /\ A e. X ) -> ( N ` A ) e. X ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpinvcl.1 | |- X = ran G |
|
| 2 | grpinvcl.2 | |- N = ( inv ` G ) |
|
| 3 | eqid | |- ( GId ` G ) = ( GId ` G ) |
|
| 4 | 1 3 2 | grpoinvval | |- ( ( G e. GrpOp /\ A e. X ) -> ( N ` A ) = ( iota_ y e. X ( y G A ) = ( GId ` G ) ) ) |
| 5 | 1 3 | grpoinveu | |- ( ( G e. GrpOp /\ A e. X ) -> E! y e. X ( y G A ) = ( GId ` G ) ) |
| 6 | riotacl | |- ( E! y e. X ( y G A ) = ( GId ` G ) -> ( iota_ y e. X ( y G A ) = ( GId ` G ) ) e. X ) |
|
| 7 | 5 6 | syl | |- ( ( G e. GrpOp /\ A e. X ) -> ( iota_ y e. X ( y G A ) = ( GId ` G ) ) e. X ) |
| 8 | 4 7 | eqeltrd | |- ( ( G e. GrpOp /\ A e. X ) -> ( N ` A ) e. X ) |