This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Every member of a group has a left inverse. (Contributed by NM, 16-Aug-2011) (Revised by Mario Carneiro, 6-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | grpcl.b | |- B = ( Base ` G ) |
|
| grpcl.p | |- .+ = ( +g ` G ) |
||
| grpinvex.p | |- .0. = ( 0g ` G ) |
||
| Assertion | grpinvex | |- ( ( G e. Grp /\ X e. B ) -> E. y e. B ( y .+ X ) = .0. ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpcl.b | |- B = ( Base ` G ) |
|
| 2 | grpcl.p | |- .+ = ( +g ` G ) |
|
| 3 | grpinvex.p | |- .0. = ( 0g ` G ) |
|
| 4 | 1 2 3 | isgrp | |- ( G e. Grp <-> ( G e. Mnd /\ A. x e. B E. y e. B ( y .+ x ) = .0. ) ) |
| 5 | 4 | simprbi | |- ( G e. Grp -> A. x e. B E. y e. B ( y .+ x ) = .0. ) |
| 6 | oveq2 | |- ( x = X -> ( y .+ x ) = ( y .+ X ) ) |
|
| 7 | 6 | eqeq1d | |- ( x = X -> ( ( y .+ x ) = .0. <-> ( y .+ X ) = .0. ) ) |
| 8 | 7 | rexbidv | |- ( x = X -> ( E. y e. B ( y .+ x ) = .0. <-> E. y e. B ( y .+ X ) = .0. ) ) |
| 9 | 8 | rspccva | |- ( ( A. x e. B E. y e. B ( y .+ x ) = .0. /\ X e. B ) -> E. y e. B ( y .+ X ) = .0. ) |
| 10 | 5 9 | sylan | |- ( ( G e. Grp /\ X e. B ) -> E. y e. B ( y .+ X ) = .0. ) |