This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Deduce right inverse from left inverse and left identity in an associative structure (such as a group). (Contributed by NM, 10-Aug-2013) (Proof shortened by Mario Carneiro, 6-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | grpinva.c | ||
| grpinva.o | |||
| grpinva.i | |||
| grpinva.a | |||
| grpinva.r | |||
| grpinva.x | |||
| grpinva.n | |||
| grpinva.e | |||
| Assertion | grpinva |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpinva.c | ||
| 2 | grpinva.o | ||
| 3 | grpinva.i | ||
| 4 | grpinva.a | ||
| 5 | grpinva.r | ||
| 6 | grpinva.x | ||
| 7 | grpinva.n | ||
| 8 | grpinva.e | ||
| 9 | 1 | 3expb | |
| 10 | 9 | caovclg | |
| 11 | 10 | adantlr | |
| 12 | 11 6 7 | caovcld | |
| 13 | 4 | caovassg | |
| 14 | 13 | adantlr | |
| 15 | 14 6 7 12 | caovassd | |
| 16 | 8 | oveq1d | |
| 17 | 14 7 6 7 | caovassd | |
| 18 | oveq2 | ||
| 19 | id | ||
| 20 | 18 19 | eqeq12d | |
| 21 | 3 | ralrimiva | |
| 22 | oveq2 | ||
| 23 | id | ||
| 24 | 22 23 | eqeq12d | |
| 25 | 24 | cbvralvw | |
| 26 | 21 25 | sylib | |
| 27 | 26 | adantr | |
| 28 | 20 27 7 | rspcdva | |
| 29 | 16 17 28 | 3eqtr3d | |
| 30 | 29 | oveq2d | |
| 31 | 15 30 | eqtrd | |
| 32 | 1 2 3 4 5 12 31 | grpinvalem |