This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A Tarski set is well-orderable. (Contributed by Mario Carneiro, 19-Apr-2013) (Revised by Mario Carneiro, 29-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | tskwe | |- ( ( A e. V /\ { x e. ~P A | x ~< A } C_ A ) -> A e. dom card ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pwexg | |- ( A e. V -> ~P A e. _V ) |
|
| 2 | rabexg | |- ( ~P A e. _V -> { x e. ~P A | x ~< A } e. _V ) |
|
| 3 | incom | |- ( { x e. ~P A | x ~< A } i^i On ) = ( On i^i { x e. ~P A | x ~< A } ) |
|
| 4 | inex1g | |- ( { x e. ~P A | x ~< A } e. _V -> ( { x e. ~P A | x ~< A } i^i On ) e. _V ) |
|
| 5 | 3 4 | eqeltrrid | |- ( { x e. ~P A | x ~< A } e. _V -> ( On i^i { x e. ~P A | x ~< A } ) e. _V ) |
| 6 | inss1 | |- ( On i^i { x e. ~P A | x ~< A } ) C_ On |
|
| 7 | 6 | sseli | |- ( z e. ( On i^i { x e. ~P A | x ~< A } ) -> z e. On ) |
| 8 | onelon | |- ( ( z e. On /\ y e. z ) -> y e. On ) |
|
| 9 | 8 | ancoms | |- ( ( y e. z /\ z e. On ) -> y e. On ) |
| 10 | 7 9 | sylan2 | |- ( ( y e. z /\ z e. ( On i^i { x e. ~P A | x ~< A } ) ) -> y e. On ) |
| 11 | onelss | |- ( z e. On -> ( y e. z -> y C_ z ) ) |
|
| 12 | 11 | impcom | |- ( ( y e. z /\ z e. On ) -> y C_ z ) |
| 13 | 7 12 | sylan2 | |- ( ( y e. z /\ z e. ( On i^i { x e. ~P A | x ~< A } ) ) -> y C_ z ) |
| 14 | inss2 | |- ( On i^i { x e. ~P A | x ~< A } ) C_ { x e. ~P A | x ~< A } |
|
| 15 | 14 | sseli | |- ( z e. ( On i^i { x e. ~P A | x ~< A } ) -> z e. { x e. ~P A | x ~< A } ) |
| 16 | breq1 | |- ( x = z -> ( x ~< A <-> z ~< A ) ) |
|
| 17 | 16 | elrab | |- ( z e. { x e. ~P A | x ~< A } <-> ( z e. ~P A /\ z ~< A ) ) |
| 18 | 15 17 | sylib | |- ( z e. ( On i^i { x e. ~P A | x ~< A } ) -> ( z e. ~P A /\ z ~< A ) ) |
| 19 | 18 | simpld | |- ( z e. ( On i^i { x e. ~P A | x ~< A } ) -> z e. ~P A ) |
| 20 | 19 | elpwid | |- ( z e. ( On i^i { x e. ~P A | x ~< A } ) -> z C_ A ) |
| 21 | 20 | adantl | |- ( ( y e. z /\ z e. ( On i^i { x e. ~P A | x ~< A } ) ) -> z C_ A ) |
| 22 | 13 21 | sstrd | |- ( ( y e. z /\ z e. ( On i^i { x e. ~P A | x ~< A } ) ) -> y C_ A ) |
| 23 | velpw | |- ( y e. ~P A <-> y C_ A ) |
|
| 24 | 22 23 | sylibr | |- ( ( y e. z /\ z e. ( On i^i { x e. ~P A | x ~< A } ) ) -> y e. ~P A ) |
| 25 | vex | |- z e. _V |
|
| 26 | ssdomg | |- ( z e. _V -> ( y C_ z -> y ~<_ z ) ) |
|
| 27 | 25 13 26 | mpsyl | |- ( ( y e. z /\ z e. ( On i^i { x e. ~P A | x ~< A } ) ) -> y ~<_ z ) |
| 28 | 18 | simprd | |- ( z e. ( On i^i { x e. ~P A | x ~< A } ) -> z ~< A ) |
| 29 | 28 | adantl | |- ( ( y e. z /\ z e. ( On i^i { x e. ~P A | x ~< A } ) ) -> z ~< A ) |
| 30 | domsdomtr | |- ( ( y ~<_ z /\ z ~< A ) -> y ~< A ) |
|
| 31 | 27 29 30 | syl2anc | |- ( ( y e. z /\ z e. ( On i^i { x e. ~P A | x ~< A } ) ) -> y ~< A ) |
| 32 | breq1 | |- ( x = y -> ( x ~< A <-> y ~< A ) ) |
|
| 33 | 32 | elrab | |- ( y e. { x e. ~P A | x ~< A } <-> ( y e. ~P A /\ y ~< A ) ) |
| 34 | 24 31 33 | sylanbrc | |- ( ( y e. z /\ z e. ( On i^i { x e. ~P A | x ~< A } ) ) -> y e. { x e. ~P A | x ~< A } ) |
| 35 | 10 34 | elind | |- ( ( y e. z /\ z e. ( On i^i { x e. ~P A | x ~< A } ) ) -> y e. ( On i^i { x e. ~P A | x ~< A } ) ) |
| 36 | 35 | gen2 | |- A. y A. z ( ( y e. z /\ z e. ( On i^i { x e. ~P A | x ~< A } ) ) -> y e. ( On i^i { x e. ~P A | x ~< A } ) ) |
| 37 | dftr2 | |- ( Tr ( On i^i { x e. ~P A | x ~< A } ) <-> A. y A. z ( ( y e. z /\ z e. ( On i^i { x e. ~P A | x ~< A } ) ) -> y e. ( On i^i { x e. ~P A | x ~< A } ) ) ) |
|
| 38 | 36 37 | mpbir | |- Tr ( On i^i { x e. ~P A | x ~< A } ) |
| 39 | ordon | |- Ord On |
|
| 40 | trssord | |- ( ( Tr ( On i^i { x e. ~P A | x ~< A } ) /\ ( On i^i { x e. ~P A | x ~< A } ) C_ On /\ Ord On ) -> Ord ( On i^i { x e. ~P A | x ~< A } ) ) |
|
| 41 | 38 6 39 40 | mp3an | |- Ord ( On i^i { x e. ~P A | x ~< A } ) |
| 42 | elong | |- ( ( On i^i { x e. ~P A | x ~< A } ) e. _V -> ( ( On i^i { x e. ~P A | x ~< A } ) e. On <-> Ord ( On i^i { x e. ~P A | x ~< A } ) ) ) |
|
| 43 | 41 42 | mpbiri | |- ( ( On i^i { x e. ~P A | x ~< A } ) e. _V -> ( On i^i { x e. ~P A | x ~< A } ) e. On ) |
| 44 | 1 2 5 43 | 4syl | |- ( A e. V -> ( On i^i { x e. ~P A | x ~< A } ) e. On ) |
| 45 | 44 | adantr | |- ( ( A e. V /\ { x e. ~P A | x ~< A } C_ A ) -> ( On i^i { x e. ~P A | x ~< A } ) e. On ) |
| 46 | simpr | |- ( ( A e. V /\ { x e. ~P A | x ~< A } C_ A ) -> { x e. ~P A | x ~< A } C_ A ) |
|
| 47 | 14 46 | sstrid | |- ( ( A e. V /\ { x e. ~P A | x ~< A } C_ A ) -> ( On i^i { x e. ~P A | x ~< A } ) C_ A ) |
| 48 | ssdomg | |- ( A e. V -> ( ( On i^i { x e. ~P A | x ~< A } ) C_ A -> ( On i^i { x e. ~P A | x ~< A } ) ~<_ A ) ) |
|
| 49 | 48 | adantr | |- ( ( A e. V /\ { x e. ~P A | x ~< A } C_ A ) -> ( ( On i^i { x e. ~P A | x ~< A } ) C_ A -> ( On i^i { x e. ~P A | x ~< A } ) ~<_ A ) ) |
| 50 | 47 49 | mpd | |- ( ( A e. V /\ { x e. ~P A | x ~< A } C_ A ) -> ( On i^i { x e. ~P A | x ~< A } ) ~<_ A ) |
| 51 | ordirr | |- ( Ord ( On i^i { x e. ~P A | x ~< A } ) -> -. ( On i^i { x e. ~P A | x ~< A } ) e. ( On i^i { x e. ~P A | x ~< A } ) ) |
|
| 52 | 41 51 | mp1i | |- ( ( A e. V /\ { x e. ~P A | x ~< A } C_ A ) -> -. ( On i^i { x e. ~P A | x ~< A } ) e. ( On i^i { x e. ~P A | x ~< A } ) ) |
| 53 | 44 | 3ad2ant1 | |- ( ( A e. V /\ { x e. ~P A | x ~< A } C_ A /\ ( On i^i { x e. ~P A | x ~< A } ) ~< A ) -> ( On i^i { x e. ~P A | x ~< A } ) e. On ) |
| 54 | elpw2g | |- ( A e. V -> ( ( On i^i { x e. ~P A | x ~< A } ) e. ~P A <-> ( On i^i { x e. ~P A | x ~< A } ) C_ A ) ) |
|
| 55 | 54 | adantr | |- ( ( A e. V /\ { x e. ~P A | x ~< A } C_ A ) -> ( ( On i^i { x e. ~P A | x ~< A } ) e. ~P A <-> ( On i^i { x e. ~P A | x ~< A } ) C_ A ) ) |
| 56 | 47 55 | mpbird | |- ( ( A e. V /\ { x e. ~P A | x ~< A } C_ A ) -> ( On i^i { x e. ~P A | x ~< A } ) e. ~P A ) |
| 57 | 56 | 3adant3 | |- ( ( A e. V /\ { x e. ~P A | x ~< A } C_ A /\ ( On i^i { x e. ~P A | x ~< A } ) ~< A ) -> ( On i^i { x e. ~P A | x ~< A } ) e. ~P A ) |
| 58 | simp3 | |- ( ( A e. V /\ { x e. ~P A | x ~< A } C_ A /\ ( On i^i { x e. ~P A | x ~< A } ) ~< A ) -> ( On i^i { x e. ~P A | x ~< A } ) ~< A ) |
|
| 59 | nfcv | |- F/_ x On |
|
| 60 | nfrab1 | |- F/_ x { x e. ~P A | x ~< A } |
|
| 61 | 59 60 | nfin | |- F/_ x ( On i^i { x e. ~P A | x ~< A } ) |
| 62 | nfcv | |- F/_ x ~P A |
|
| 63 | nfcv | |- F/_ x ~< |
|
| 64 | nfcv | |- F/_ x A |
|
| 65 | 61 63 64 | nfbr | |- F/ x ( On i^i { x e. ~P A | x ~< A } ) ~< A |
| 66 | breq1 | |- ( x = ( On i^i { x e. ~P A | x ~< A } ) -> ( x ~< A <-> ( On i^i { x e. ~P A | x ~< A } ) ~< A ) ) |
|
| 67 | 61 62 65 66 | elrabf | |- ( ( On i^i { x e. ~P A | x ~< A } ) e. { x e. ~P A | x ~< A } <-> ( ( On i^i { x e. ~P A | x ~< A } ) e. ~P A /\ ( On i^i { x e. ~P A | x ~< A } ) ~< A ) ) |
| 68 | 57 58 67 | sylanbrc | |- ( ( A e. V /\ { x e. ~P A | x ~< A } C_ A /\ ( On i^i { x e. ~P A | x ~< A } ) ~< A ) -> ( On i^i { x e. ~P A | x ~< A } ) e. { x e. ~P A | x ~< A } ) |
| 69 | 53 68 | elind | |- ( ( A e. V /\ { x e. ~P A | x ~< A } C_ A /\ ( On i^i { x e. ~P A | x ~< A } ) ~< A ) -> ( On i^i { x e. ~P A | x ~< A } ) e. ( On i^i { x e. ~P A | x ~< A } ) ) |
| 70 | 69 | 3expia | |- ( ( A e. V /\ { x e. ~P A | x ~< A } C_ A ) -> ( ( On i^i { x e. ~P A | x ~< A } ) ~< A -> ( On i^i { x e. ~P A | x ~< A } ) e. ( On i^i { x e. ~P A | x ~< A } ) ) ) |
| 71 | 52 70 | mtod | |- ( ( A e. V /\ { x e. ~P A | x ~< A } C_ A ) -> -. ( On i^i { x e. ~P A | x ~< A } ) ~< A ) |
| 72 | bren2 | |- ( ( On i^i { x e. ~P A | x ~< A } ) ~~ A <-> ( ( On i^i { x e. ~P A | x ~< A } ) ~<_ A /\ -. ( On i^i { x e. ~P A | x ~< A } ) ~< A ) ) |
|
| 73 | 50 71 72 | sylanbrc | |- ( ( A e. V /\ { x e. ~P A | x ~< A } C_ A ) -> ( On i^i { x e. ~P A | x ~< A } ) ~~ A ) |
| 74 | isnumi | |- ( ( ( On i^i { x e. ~P A | x ~< A } ) e. On /\ ( On i^i { x e. ~P A | x ~< A } ) ~~ A ) -> A e. dom card ) |
|
| 75 | 45 73 74 | syl2anc | |- ( ( A e. V /\ { x e. ~P A | x ~< A } C_ A ) -> A e. dom card ) |