This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In the case of theorem ghmqusker , the composition of the natural homomorphism L with the constructed homomorphism J equals the original homomorphism F . One says that F factors through Q . (Proposed by Saveliy Skresanov, 15-Feb-2025.) (Contributed by Thierry Arnoux, 15-Feb-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ghmqusker.1 | ⊢ 0 = ( 0g ‘ 𝐻 ) | |
| ghmqusker.f | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ) | ||
| ghmqusker.k | ⊢ 𝐾 = ( ◡ 𝐹 “ { 0 } ) | ||
| ghmqusker.q | ⊢ 𝑄 = ( 𝐺 /s ( 𝐺 ~QG 𝐾 ) ) | ||
| ghmqusker.j | ⊢ 𝐽 = ( 𝑞 ∈ ( Base ‘ 𝑄 ) ↦ ∪ ( 𝐹 “ 𝑞 ) ) | ||
| ghmquskerco.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | ||
| ghmquskerco.l | ⊢ 𝐿 = ( 𝑥 ∈ 𝐵 ↦ [ 𝑥 ] ( 𝐺 ~QG 𝐾 ) ) | ||
| Assertion | ghmquskerco | ⊢ ( 𝜑 → 𝐹 = ( 𝐽 ∘ 𝐿 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ghmqusker.1 | ⊢ 0 = ( 0g ‘ 𝐻 ) | |
| 2 | ghmqusker.f | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ) | |
| 3 | ghmqusker.k | ⊢ 𝐾 = ( ◡ 𝐹 “ { 0 } ) | |
| 4 | ghmqusker.q | ⊢ 𝑄 = ( 𝐺 /s ( 𝐺 ~QG 𝐾 ) ) | |
| 5 | ghmqusker.j | ⊢ 𝐽 = ( 𝑞 ∈ ( Base ‘ 𝑄 ) ↦ ∪ ( 𝐹 “ 𝑞 ) ) | |
| 6 | ghmquskerco.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 7 | ghmquskerco.l | ⊢ 𝐿 = ( 𝑥 ∈ 𝐵 ↦ [ 𝑥 ] ( 𝐺 ~QG 𝐾 ) ) | |
| 8 | eqid | ⊢ ( Base ‘ 𝐻 ) = ( Base ‘ 𝐻 ) | |
| 9 | 6 8 | ghmf | ⊢ ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) → 𝐹 : 𝐵 ⟶ ( Base ‘ 𝐻 ) ) |
| 10 | 2 9 | syl | ⊢ ( 𝜑 → 𝐹 : 𝐵 ⟶ ( Base ‘ 𝐻 ) ) |
| 11 | 10 | ffnd | ⊢ ( 𝜑 → 𝐹 Fn 𝐵 ) |
| 12 | 2 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ) |
| 13 | 12 | imaexd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( 𝐹 “ [ 𝑥 ] ( 𝐺 ~QG 𝐾 ) ) ∈ V ) |
| 14 | 13 | uniexd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ∪ ( 𝐹 “ [ 𝑥 ] ( 𝐺 ~QG 𝐾 ) ) ∈ V ) |
| 15 | 14 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐵 ∪ ( 𝐹 “ [ 𝑥 ] ( 𝐺 ~QG 𝐾 ) ) ∈ V ) |
| 16 | eqid | ⊢ ( 𝑥 ∈ 𝐵 ↦ ∪ ( 𝐹 “ [ 𝑥 ] ( 𝐺 ~QG 𝐾 ) ) ) = ( 𝑥 ∈ 𝐵 ↦ ∪ ( 𝐹 “ [ 𝑥 ] ( 𝐺 ~QG 𝐾 ) ) ) | |
| 17 | 16 | fnmpt | ⊢ ( ∀ 𝑥 ∈ 𝐵 ∪ ( 𝐹 “ [ 𝑥 ] ( 𝐺 ~QG 𝐾 ) ) ∈ V → ( 𝑥 ∈ 𝐵 ↦ ∪ ( 𝐹 “ [ 𝑥 ] ( 𝐺 ~QG 𝐾 ) ) ) Fn 𝐵 ) |
| 18 | 15 17 | syl | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐵 ↦ ∪ ( 𝐹 “ [ 𝑥 ] ( 𝐺 ~QG 𝐾 ) ) ) Fn 𝐵 ) |
| 19 | ovex | ⊢ ( 𝐺 ~QG 𝐾 ) ∈ V | |
| 20 | 19 | ecelqsi | ⊢ ( 𝑥 ∈ 𝐵 → [ 𝑥 ] ( 𝐺 ~QG 𝐾 ) ∈ ( 𝐵 / ( 𝐺 ~QG 𝐾 ) ) ) |
| 21 | 20 | adantl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → [ 𝑥 ] ( 𝐺 ~QG 𝐾 ) ∈ ( 𝐵 / ( 𝐺 ~QG 𝐾 ) ) ) |
| 22 | 4 | a1i | ⊢ ( 𝜑 → 𝑄 = ( 𝐺 /s ( 𝐺 ~QG 𝐾 ) ) ) |
| 23 | 6 | a1i | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐺 ) ) |
| 24 | ovexd | ⊢ ( 𝜑 → ( 𝐺 ~QG 𝐾 ) ∈ V ) | |
| 25 | reldmghm | ⊢ Rel dom GrpHom | |
| 26 | 25 | ovrcl | ⊢ ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) → ( 𝐺 ∈ V ∧ 𝐻 ∈ V ) ) |
| 27 | 26 | simpld | ⊢ ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) → 𝐺 ∈ V ) |
| 28 | 2 27 | syl | ⊢ ( 𝜑 → 𝐺 ∈ V ) |
| 29 | 22 23 24 28 | qusbas | ⊢ ( 𝜑 → ( 𝐵 / ( 𝐺 ~QG 𝐾 ) ) = ( Base ‘ 𝑄 ) ) |
| 30 | 29 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( 𝐵 / ( 𝐺 ~QG 𝐾 ) ) = ( Base ‘ 𝑄 ) ) |
| 31 | 21 30 | eleqtrd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → [ 𝑥 ] ( 𝐺 ~QG 𝐾 ) ∈ ( Base ‘ 𝑄 ) ) |
| 32 | 7 | a1i | ⊢ ( 𝜑 → 𝐿 = ( 𝑥 ∈ 𝐵 ↦ [ 𝑥 ] ( 𝐺 ~QG 𝐾 ) ) ) |
| 33 | 5 | a1i | ⊢ ( 𝜑 → 𝐽 = ( 𝑞 ∈ ( Base ‘ 𝑄 ) ↦ ∪ ( 𝐹 “ 𝑞 ) ) ) |
| 34 | imaeq2 | ⊢ ( 𝑞 = [ 𝑥 ] ( 𝐺 ~QG 𝐾 ) → ( 𝐹 “ 𝑞 ) = ( 𝐹 “ [ 𝑥 ] ( 𝐺 ~QG 𝐾 ) ) ) | |
| 35 | 34 | unieqd | ⊢ ( 𝑞 = [ 𝑥 ] ( 𝐺 ~QG 𝐾 ) → ∪ ( 𝐹 “ 𝑞 ) = ∪ ( 𝐹 “ [ 𝑥 ] ( 𝐺 ~QG 𝐾 ) ) ) |
| 36 | 31 32 33 35 | fmptco | ⊢ ( 𝜑 → ( 𝐽 ∘ 𝐿 ) = ( 𝑥 ∈ 𝐵 ↦ ∪ ( 𝐹 “ [ 𝑥 ] ( 𝐺 ~QG 𝐾 ) ) ) ) |
| 37 | 36 | fneq1d | ⊢ ( 𝜑 → ( ( 𝐽 ∘ 𝐿 ) Fn 𝐵 ↔ ( 𝑥 ∈ 𝐵 ↦ ∪ ( 𝐹 “ [ 𝑥 ] ( 𝐺 ~QG 𝐾 ) ) ) Fn 𝐵 ) ) |
| 38 | 18 37 | mpbird | ⊢ ( 𝜑 → ( 𝐽 ∘ 𝐿 ) Fn 𝐵 ) |
| 39 | ecexg | ⊢ ( ( 𝐺 ~QG 𝐾 ) ∈ V → [ 𝑥 ] ( 𝐺 ~QG 𝐾 ) ∈ V ) | |
| 40 | 19 39 | ax-mp | ⊢ [ 𝑥 ] ( 𝐺 ~QG 𝐾 ) ∈ V |
| 41 | 40 7 | fnmpti | ⊢ 𝐿 Fn 𝐵 |
| 42 | simpr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → 𝑥 ∈ 𝐵 ) | |
| 43 | fvco2 | ⊢ ( ( 𝐿 Fn 𝐵 ∧ 𝑥 ∈ 𝐵 ) → ( ( 𝐽 ∘ 𝐿 ) ‘ 𝑥 ) = ( 𝐽 ‘ ( 𝐿 ‘ 𝑥 ) ) ) | |
| 44 | 41 42 43 | sylancr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( ( 𝐽 ∘ 𝐿 ) ‘ 𝑥 ) = ( 𝐽 ‘ ( 𝐿 ‘ 𝑥 ) ) ) |
| 45 | 40 | a1i | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → [ 𝑥 ] ( 𝐺 ~QG 𝐾 ) ∈ V ) |
| 46 | 32 45 | fvmpt2d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( 𝐿 ‘ 𝑥 ) = [ 𝑥 ] ( 𝐺 ~QG 𝐾 ) ) |
| 47 | 46 | fveq2d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( 𝐽 ‘ ( 𝐿 ‘ 𝑥 ) ) = ( 𝐽 ‘ [ 𝑥 ] ( 𝐺 ~QG 𝐾 ) ) ) |
| 48 | 42 6 | eleqtrdi | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → 𝑥 ∈ ( Base ‘ 𝐺 ) ) |
| 49 | 1 12 3 4 5 48 | ghmquskerlem1 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( 𝐽 ‘ [ 𝑥 ] ( 𝐺 ~QG 𝐾 ) ) = ( 𝐹 ‘ 𝑥 ) ) |
| 50 | 44 47 49 | 3eqtrrd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( 𝐹 ‘ 𝑥 ) = ( ( 𝐽 ∘ 𝐿 ) ‘ 𝑥 ) ) |
| 51 | 11 38 50 | eqfnfvd | ⊢ ( 𝜑 → 𝐹 = ( 𝐽 ∘ 𝐿 ) ) |