This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two ways to express the locus of equality between two functions. (Contributed by Stefan O'Rear, 17-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fndmin | |- ( ( F Fn A /\ G Fn A ) -> dom ( F i^i G ) = { x e. A | ( F ` x ) = ( G ` x ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dffn5 | |- ( F Fn A <-> F = ( x e. A |-> ( F ` x ) ) ) |
|
| 2 | 1 | biimpi | |- ( F Fn A -> F = ( x e. A |-> ( F ` x ) ) ) |
| 3 | df-mpt | |- ( x e. A |-> ( F ` x ) ) = { <. x , y >. | ( x e. A /\ y = ( F ` x ) ) } |
|
| 4 | 2 3 | eqtrdi | |- ( F Fn A -> F = { <. x , y >. | ( x e. A /\ y = ( F ` x ) ) } ) |
| 5 | dffn5 | |- ( G Fn A <-> G = ( x e. A |-> ( G ` x ) ) ) |
|
| 6 | 5 | biimpi | |- ( G Fn A -> G = ( x e. A |-> ( G ` x ) ) ) |
| 7 | df-mpt | |- ( x e. A |-> ( G ` x ) ) = { <. x , y >. | ( x e. A /\ y = ( G ` x ) ) } |
|
| 8 | 6 7 | eqtrdi | |- ( G Fn A -> G = { <. x , y >. | ( x e. A /\ y = ( G ` x ) ) } ) |
| 9 | 4 8 | ineqan12d | |- ( ( F Fn A /\ G Fn A ) -> ( F i^i G ) = ( { <. x , y >. | ( x e. A /\ y = ( F ` x ) ) } i^i { <. x , y >. | ( x e. A /\ y = ( G ` x ) ) } ) ) |
| 10 | inopab | |- ( { <. x , y >. | ( x e. A /\ y = ( F ` x ) ) } i^i { <. x , y >. | ( x e. A /\ y = ( G ` x ) ) } ) = { <. x , y >. | ( ( x e. A /\ y = ( F ` x ) ) /\ ( x e. A /\ y = ( G ` x ) ) ) } |
|
| 11 | 9 10 | eqtrdi | |- ( ( F Fn A /\ G Fn A ) -> ( F i^i G ) = { <. x , y >. | ( ( x e. A /\ y = ( F ` x ) ) /\ ( x e. A /\ y = ( G ` x ) ) ) } ) |
| 12 | 11 | dmeqd | |- ( ( F Fn A /\ G Fn A ) -> dom ( F i^i G ) = dom { <. x , y >. | ( ( x e. A /\ y = ( F ` x ) ) /\ ( x e. A /\ y = ( G ` x ) ) ) } ) |
| 13 | 19.42v | |- ( E. y ( x e. A /\ ( y = ( F ` x ) /\ y = ( G ` x ) ) ) <-> ( x e. A /\ E. y ( y = ( F ` x ) /\ y = ( G ` x ) ) ) ) |
|
| 14 | anandi | |- ( ( x e. A /\ ( y = ( F ` x ) /\ y = ( G ` x ) ) ) <-> ( ( x e. A /\ y = ( F ` x ) ) /\ ( x e. A /\ y = ( G ` x ) ) ) ) |
|
| 15 | 14 | exbii | |- ( E. y ( x e. A /\ ( y = ( F ` x ) /\ y = ( G ` x ) ) ) <-> E. y ( ( x e. A /\ y = ( F ` x ) ) /\ ( x e. A /\ y = ( G ` x ) ) ) ) |
| 16 | fvex | |- ( F ` x ) e. _V |
|
| 17 | eqeq1 | |- ( y = ( F ` x ) -> ( y = ( G ` x ) <-> ( F ` x ) = ( G ` x ) ) ) |
|
| 18 | 16 17 | ceqsexv | |- ( E. y ( y = ( F ` x ) /\ y = ( G ` x ) ) <-> ( F ` x ) = ( G ` x ) ) |
| 19 | 18 | anbi2i | |- ( ( x e. A /\ E. y ( y = ( F ` x ) /\ y = ( G ` x ) ) ) <-> ( x e. A /\ ( F ` x ) = ( G ` x ) ) ) |
| 20 | 13 15 19 | 3bitr3i | |- ( E. y ( ( x e. A /\ y = ( F ` x ) ) /\ ( x e. A /\ y = ( G ` x ) ) ) <-> ( x e. A /\ ( F ` x ) = ( G ` x ) ) ) |
| 21 | 20 | abbii | |- { x | E. y ( ( x e. A /\ y = ( F ` x ) ) /\ ( x e. A /\ y = ( G ` x ) ) ) } = { x | ( x e. A /\ ( F ` x ) = ( G ` x ) ) } |
| 22 | dmopab | |- dom { <. x , y >. | ( ( x e. A /\ y = ( F ` x ) ) /\ ( x e. A /\ y = ( G ` x ) ) ) } = { x | E. y ( ( x e. A /\ y = ( F ` x ) ) /\ ( x e. A /\ y = ( G ` x ) ) ) } |
|
| 23 | df-rab | |- { x e. A | ( F ` x ) = ( G ` x ) } = { x | ( x e. A /\ ( F ` x ) = ( G ` x ) ) } |
|
| 24 | 21 22 23 | 3eqtr4i | |- dom { <. x , y >. | ( ( x e. A /\ y = ( F ` x ) ) /\ ( x e. A /\ y = ( G ` x ) ) ) } = { x e. A | ( F ` x ) = ( G ` x ) } |
| 25 | 12 24 | eqtrdi | |- ( ( F Fn A /\ G Fn A ) -> dom ( F i^i G ) = { x e. A | ( F ` x ) = ( G ` x ) } ) |