This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The infinite sum of A x. ( R ^ 1 ) + A x. ( R ^ 2 ) ... is ( A x. R ) / ( 1 - R ) . (Contributed by NM, 2-Nov-2007) (Revised by Mario Carneiro, 26-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | geoisum1c | |- ( ( A e. CC /\ R e. CC /\ ( abs ` R ) < 1 ) -> sum_ k e. NN ( A x. ( R ^ k ) ) = ( ( A x. R ) / ( 1 - R ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 | |- ( ( A e. CC /\ R e. CC /\ ( abs ` R ) < 1 ) -> A e. CC ) |
|
| 2 | simp2 | |- ( ( A e. CC /\ R e. CC /\ ( abs ` R ) < 1 ) -> R e. CC ) |
|
| 3 | ax-1cn | |- 1 e. CC |
|
| 4 | subcl | |- ( ( 1 e. CC /\ R e. CC ) -> ( 1 - R ) e. CC ) |
|
| 5 | 3 2 4 | sylancr | |- ( ( A e. CC /\ R e. CC /\ ( abs ` R ) < 1 ) -> ( 1 - R ) e. CC ) |
| 6 | simp3 | |- ( ( A e. CC /\ R e. CC /\ ( abs ` R ) < 1 ) -> ( abs ` R ) < 1 ) |
|
| 7 | 1re | |- 1 e. RR |
|
| 8 | 7 | ltnri | |- -. 1 < 1 |
| 9 | abs1 | |- ( abs ` 1 ) = 1 |
|
| 10 | fveq2 | |- ( 1 = R -> ( abs ` 1 ) = ( abs ` R ) ) |
|
| 11 | 9 10 | eqtr3id | |- ( 1 = R -> 1 = ( abs ` R ) ) |
| 12 | 11 | breq1d | |- ( 1 = R -> ( 1 < 1 <-> ( abs ` R ) < 1 ) ) |
| 13 | 8 12 | mtbii | |- ( 1 = R -> -. ( abs ` R ) < 1 ) |
| 14 | 13 | necon2ai | |- ( ( abs ` R ) < 1 -> 1 =/= R ) |
| 15 | 6 14 | syl | |- ( ( A e. CC /\ R e. CC /\ ( abs ` R ) < 1 ) -> 1 =/= R ) |
| 16 | subeq0 | |- ( ( 1 e. CC /\ R e. CC ) -> ( ( 1 - R ) = 0 <-> 1 = R ) ) |
|
| 17 | 16 | necon3bid | |- ( ( 1 e. CC /\ R e. CC ) -> ( ( 1 - R ) =/= 0 <-> 1 =/= R ) ) |
| 18 | 3 2 17 | sylancr | |- ( ( A e. CC /\ R e. CC /\ ( abs ` R ) < 1 ) -> ( ( 1 - R ) =/= 0 <-> 1 =/= R ) ) |
| 19 | 15 18 | mpbird | |- ( ( A e. CC /\ R e. CC /\ ( abs ` R ) < 1 ) -> ( 1 - R ) =/= 0 ) |
| 20 | 1 2 5 19 | divassd | |- ( ( A e. CC /\ R e. CC /\ ( abs ` R ) < 1 ) -> ( ( A x. R ) / ( 1 - R ) ) = ( A x. ( R / ( 1 - R ) ) ) ) |
| 21 | geoisum1 | |- ( ( R e. CC /\ ( abs ` R ) < 1 ) -> sum_ k e. NN ( R ^ k ) = ( R / ( 1 - R ) ) ) |
|
| 22 | 21 | 3adant1 | |- ( ( A e. CC /\ R e. CC /\ ( abs ` R ) < 1 ) -> sum_ k e. NN ( R ^ k ) = ( R / ( 1 - R ) ) ) |
| 23 | 22 | oveq2d | |- ( ( A e. CC /\ R e. CC /\ ( abs ` R ) < 1 ) -> ( A x. sum_ k e. NN ( R ^ k ) ) = ( A x. ( R / ( 1 - R ) ) ) ) |
| 24 | nnuz | |- NN = ( ZZ>= ` 1 ) |
|
| 25 | 1zzd | |- ( ( A e. CC /\ R e. CC /\ ( abs ` R ) < 1 ) -> 1 e. ZZ ) |
|
| 26 | oveq2 | |- ( n = k -> ( R ^ n ) = ( R ^ k ) ) |
|
| 27 | eqid | |- ( n e. NN |-> ( R ^ n ) ) = ( n e. NN |-> ( R ^ n ) ) |
|
| 28 | ovex | |- ( R ^ k ) e. _V |
|
| 29 | 26 27 28 | fvmpt | |- ( k e. NN -> ( ( n e. NN |-> ( R ^ n ) ) ` k ) = ( R ^ k ) ) |
| 30 | 29 | adantl | |- ( ( ( A e. CC /\ R e. CC /\ ( abs ` R ) < 1 ) /\ k e. NN ) -> ( ( n e. NN |-> ( R ^ n ) ) ` k ) = ( R ^ k ) ) |
| 31 | nnnn0 | |- ( k e. NN -> k e. NN0 ) |
|
| 32 | expcl | |- ( ( R e. CC /\ k e. NN0 ) -> ( R ^ k ) e. CC ) |
|
| 33 | 2 31 32 | syl2an | |- ( ( ( A e. CC /\ R e. CC /\ ( abs ` R ) < 1 ) /\ k e. NN ) -> ( R ^ k ) e. CC ) |
| 34 | 1nn0 | |- 1 e. NN0 |
|
| 35 | 34 | a1i | |- ( ( A e. CC /\ R e. CC /\ ( abs ` R ) < 1 ) -> 1 e. NN0 ) |
| 36 | elnnuz | |- ( k e. NN <-> k e. ( ZZ>= ` 1 ) ) |
|
| 37 | 36 30 | sylan2br | |- ( ( ( A e. CC /\ R e. CC /\ ( abs ` R ) < 1 ) /\ k e. ( ZZ>= ` 1 ) ) -> ( ( n e. NN |-> ( R ^ n ) ) ` k ) = ( R ^ k ) ) |
| 38 | 2 6 35 37 | geolim2 | |- ( ( A e. CC /\ R e. CC /\ ( abs ` R ) < 1 ) -> seq 1 ( + , ( n e. NN |-> ( R ^ n ) ) ) ~~> ( ( R ^ 1 ) / ( 1 - R ) ) ) |
| 39 | seqex | |- seq 1 ( + , ( n e. NN |-> ( R ^ n ) ) ) e. _V |
|
| 40 | ovex | |- ( ( R ^ 1 ) / ( 1 - R ) ) e. _V |
|
| 41 | 39 40 | breldm | |- ( seq 1 ( + , ( n e. NN |-> ( R ^ n ) ) ) ~~> ( ( R ^ 1 ) / ( 1 - R ) ) -> seq 1 ( + , ( n e. NN |-> ( R ^ n ) ) ) e. dom ~~> ) |
| 42 | 38 41 | syl | |- ( ( A e. CC /\ R e. CC /\ ( abs ` R ) < 1 ) -> seq 1 ( + , ( n e. NN |-> ( R ^ n ) ) ) e. dom ~~> ) |
| 43 | 24 25 30 33 42 1 | isummulc2 | |- ( ( A e. CC /\ R e. CC /\ ( abs ` R ) < 1 ) -> ( A x. sum_ k e. NN ( R ^ k ) ) = sum_ k e. NN ( A x. ( R ^ k ) ) ) |
| 44 | 20 23 43 | 3eqtr2rd | |- ( ( A e. CC /\ R e. CC /\ ( abs ` R ) < 1 ) -> sum_ k e. NN ( A x. ( R ^ k ) ) = ( ( A x. R ) / ( 1 - R ) ) ) |