This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The infinite sum of A ^ 1 + A ^ 2 ... is ( A / ( 1 - A ) ) . (Contributed by NM, 1-Nov-2007) (Revised by Mario Carneiro, 26-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | geoisum1 | |- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> sum_ k e. NN ( A ^ k ) = ( A / ( 1 - A ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnuz | |- NN = ( ZZ>= ` 1 ) |
|
| 2 | 1zzd | |- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> 1 e. ZZ ) |
|
| 3 | oveq2 | |- ( n = k -> ( A ^ n ) = ( A ^ k ) ) |
|
| 4 | eqid | |- ( n e. NN |-> ( A ^ n ) ) = ( n e. NN |-> ( A ^ n ) ) |
|
| 5 | ovex | |- ( A ^ k ) e. _V |
|
| 6 | 3 4 5 | fvmpt | |- ( k e. NN -> ( ( n e. NN |-> ( A ^ n ) ) ` k ) = ( A ^ k ) ) |
| 7 | 6 | adantl | |- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ k e. NN ) -> ( ( n e. NN |-> ( A ^ n ) ) ` k ) = ( A ^ k ) ) |
| 8 | simpl | |- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> A e. CC ) |
|
| 9 | nnnn0 | |- ( k e. NN -> k e. NN0 ) |
|
| 10 | expcl | |- ( ( A e. CC /\ k e. NN0 ) -> ( A ^ k ) e. CC ) |
|
| 11 | 8 9 10 | syl2an | |- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ k e. NN ) -> ( A ^ k ) e. CC ) |
| 12 | simpr | |- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> ( abs ` A ) < 1 ) |
|
| 13 | 1nn0 | |- 1 e. NN0 |
|
| 14 | 13 | a1i | |- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> 1 e. NN0 ) |
| 15 | elnnuz | |- ( k e. NN <-> k e. ( ZZ>= ` 1 ) ) |
|
| 16 | 15 7 | sylan2br | |- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ k e. ( ZZ>= ` 1 ) ) -> ( ( n e. NN |-> ( A ^ n ) ) ` k ) = ( A ^ k ) ) |
| 17 | 8 12 14 16 | geolim2 | |- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> seq 1 ( + , ( n e. NN |-> ( A ^ n ) ) ) ~~> ( ( A ^ 1 ) / ( 1 - A ) ) ) |
| 18 | 1 2 7 11 17 | isumclim | |- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> sum_ k e. NN ( A ^ k ) = ( ( A ^ 1 ) / ( 1 - A ) ) ) |
| 19 | exp1 | |- ( A e. CC -> ( A ^ 1 ) = A ) |
|
| 20 | 19 | adantr | |- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> ( A ^ 1 ) = A ) |
| 21 | 20 | oveq1d | |- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> ( ( A ^ 1 ) / ( 1 - A ) ) = ( A / ( 1 - A ) ) ) |
| 22 | 18 21 | eqtrd | |- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> sum_ k e. NN ( A ^ k ) = ( A / ( 1 - A ) ) ) |