This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A square is never prime. (Contributed by Mario Carneiro, 20-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sqnprm | |- ( A e. ZZ -> -. ( A ^ 2 ) e. Prime ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zre | |- ( A e. ZZ -> A e. RR ) |
|
| 2 | 1 | adantr | |- ( ( A e. ZZ /\ ( A ^ 2 ) e. Prime ) -> A e. RR ) |
| 3 | absresq | |- ( A e. RR -> ( ( abs ` A ) ^ 2 ) = ( A ^ 2 ) ) |
|
| 4 | 2 3 | syl | |- ( ( A e. ZZ /\ ( A ^ 2 ) e. Prime ) -> ( ( abs ` A ) ^ 2 ) = ( A ^ 2 ) ) |
| 5 | 2 | recnd | |- ( ( A e. ZZ /\ ( A ^ 2 ) e. Prime ) -> A e. CC ) |
| 6 | 5 | abscld | |- ( ( A e. ZZ /\ ( A ^ 2 ) e. Prime ) -> ( abs ` A ) e. RR ) |
| 7 | 6 | recnd | |- ( ( A e. ZZ /\ ( A ^ 2 ) e. Prime ) -> ( abs ` A ) e. CC ) |
| 8 | 7 | sqvald | |- ( ( A e. ZZ /\ ( A ^ 2 ) e. Prime ) -> ( ( abs ` A ) ^ 2 ) = ( ( abs ` A ) x. ( abs ` A ) ) ) |
| 9 | 4 8 | eqtr3d | |- ( ( A e. ZZ /\ ( A ^ 2 ) e. Prime ) -> ( A ^ 2 ) = ( ( abs ` A ) x. ( abs ` A ) ) ) |
| 10 | simpr | |- ( ( A e. ZZ /\ ( A ^ 2 ) e. Prime ) -> ( A ^ 2 ) e. Prime ) |
|
| 11 | 9 10 | eqeltrrd | |- ( ( A e. ZZ /\ ( A ^ 2 ) e. Prime ) -> ( ( abs ` A ) x. ( abs ` A ) ) e. Prime ) |
| 12 | nn0abscl | |- ( A e. ZZ -> ( abs ` A ) e. NN0 ) |
|
| 13 | 12 | adantr | |- ( ( A e. ZZ /\ ( A ^ 2 ) e. Prime ) -> ( abs ` A ) e. NN0 ) |
| 14 | 13 | nn0zd | |- ( ( A e. ZZ /\ ( A ^ 2 ) e. Prime ) -> ( abs ` A ) e. ZZ ) |
| 15 | sq1 | |- ( 1 ^ 2 ) = 1 |
|
| 16 | prmuz2 | |- ( ( A ^ 2 ) e. Prime -> ( A ^ 2 ) e. ( ZZ>= ` 2 ) ) |
|
| 17 | 16 | adantl | |- ( ( A e. ZZ /\ ( A ^ 2 ) e. Prime ) -> ( A ^ 2 ) e. ( ZZ>= ` 2 ) ) |
| 18 | eluz2gt1 | |- ( ( A ^ 2 ) e. ( ZZ>= ` 2 ) -> 1 < ( A ^ 2 ) ) |
|
| 19 | 17 18 | syl | |- ( ( A e. ZZ /\ ( A ^ 2 ) e. Prime ) -> 1 < ( A ^ 2 ) ) |
| 20 | 19 4 | breqtrrd | |- ( ( A e. ZZ /\ ( A ^ 2 ) e. Prime ) -> 1 < ( ( abs ` A ) ^ 2 ) ) |
| 21 | 15 20 | eqbrtrid | |- ( ( A e. ZZ /\ ( A ^ 2 ) e. Prime ) -> ( 1 ^ 2 ) < ( ( abs ` A ) ^ 2 ) ) |
| 22 | 5 | absge0d | |- ( ( A e. ZZ /\ ( A ^ 2 ) e. Prime ) -> 0 <_ ( abs ` A ) ) |
| 23 | 1re | |- 1 e. RR |
|
| 24 | 0le1 | |- 0 <_ 1 |
|
| 25 | lt2sq | |- ( ( ( 1 e. RR /\ 0 <_ 1 ) /\ ( ( abs ` A ) e. RR /\ 0 <_ ( abs ` A ) ) ) -> ( 1 < ( abs ` A ) <-> ( 1 ^ 2 ) < ( ( abs ` A ) ^ 2 ) ) ) |
|
| 26 | 23 24 25 | mpanl12 | |- ( ( ( abs ` A ) e. RR /\ 0 <_ ( abs ` A ) ) -> ( 1 < ( abs ` A ) <-> ( 1 ^ 2 ) < ( ( abs ` A ) ^ 2 ) ) ) |
| 27 | 6 22 26 | syl2anc | |- ( ( A e. ZZ /\ ( A ^ 2 ) e. Prime ) -> ( 1 < ( abs ` A ) <-> ( 1 ^ 2 ) < ( ( abs ` A ) ^ 2 ) ) ) |
| 28 | 21 27 | mpbird | |- ( ( A e. ZZ /\ ( A ^ 2 ) e. Prime ) -> 1 < ( abs ` A ) ) |
| 29 | eluz2b1 | |- ( ( abs ` A ) e. ( ZZ>= ` 2 ) <-> ( ( abs ` A ) e. ZZ /\ 1 < ( abs ` A ) ) ) |
|
| 30 | 14 28 29 | sylanbrc | |- ( ( A e. ZZ /\ ( A ^ 2 ) e. Prime ) -> ( abs ` A ) e. ( ZZ>= ` 2 ) ) |
| 31 | nprm | |- ( ( ( abs ` A ) e. ( ZZ>= ` 2 ) /\ ( abs ` A ) e. ( ZZ>= ` 2 ) ) -> -. ( ( abs ` A ) x. ( abs ` A ) ) e. Prime ) |
|
| 32 | 30 30 31 | syl2anc | |- ( ( A e. ZZ /\ ( A ^ 2 ) e. Prime ) -> -. ( ( abs ` A ) x. ( abs ` A ) ) e. Prime ) |
| 33 | 11 32 | pm2.65da | |- ( A e. ZZ -> -. ( A ^ 2 ) e. Prime ) |