This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An integer which divides both operands of the gcd operator is bounded by it. (Contributed by Paul Chapman, 21-Mar-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dvdslegcd | |- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ -. ( M = 0 /\ N = 0 ) ) -> ( ( K || M /\ K || N ) -> K <_ ( M gcd N ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | |- { n e. ZZ | A. z e. { M , N } n || z } = { n e. ZZ | A. z e. { M , N } n || z } |
|
| 2 | eqid | |- { n e. ZZ | ( n || M /\ n || N ) } = { n e. ZZ | ( n || M /\ n || N ) } |
|
| 3 | 1 2 | gcdcllem3 | |- ( ( ( M e. ZZ /\ N e. ZZ ) /\ -. ( M = 0 /\ N = 0 ) ) -> ( sup ( { n e. ZZ | ( n || M /\ n || N ) } , RR , < ) e. NN /\ ( sup ( { n e. ZZ | ( n || M /\ n || N ) } , RR , < ) || M /\ sup ( { n e. ZZ | ( n || M /\ n || N ) } , RR , < ) || N ) /\ ( ( K e. ZZ /\ K || M /\ K || N ) -> K <_ sup ( { n e. ZZ | ( n || M /\ n || N ) } , RR , < ) ) ) ) |
| 4 | 3 | simp3d | |- ( ( ( M e. ZZ /\ N e. ZZ ) /\ -. ( M = 0 /\ N = 0 ) ) -> ( ( K e. ZZ /\ K || M /\ K || N ) -> K <_ sup ( { n e. ZZ | ( n || M /\ n || N ) } , RR , < ) ) ) |
| 5 | gcdn0val | |- ( ( ( M e. ZZ /\ N e. ZZ ) /\ -. ( M = 0 /\ N = 0 ) ) -> ( M gcd N ) = sup ( { n e. ZZ | ( n || M /\ n || N ) } , RR , < ) ) |
|
| 6 | 5 | breq2d | |- ( ( ( M e. ZZ /\ N e. ZZ ) /\ -. ( M = 0 /\ N = 0 ) ) -> ( K <_ ( M gcd N ) <-> K <_ sup ( { n e. ZZ | ( n || M /\ n || N ) } , RR , < ) ) ) |
| 7 | 4 6 | sylibrd | |- ( ( ( M e. ZZ /\ N e. ZZ ) /\ -. ( M = 0 /\ N = 0 ) ) -> ( ( K e. ZZ /\ K || M /\ K || N ) -> K <_ ( M gcd N ) ) ) |
| 8 | 7 | com12 | |- ( ( K e. ZZ /\ K || M /\ K || N ) -> ( ( ( M e. ZZ /\ N e. ZZ ) /\ -. ( M = 0 /\ N = 0 ) ) -> K <_ ( M gcd N ) ) ) |
| 9 | 8 | 3expb | |- ( ( K e. ZZ /\ ( K || M /\ K || N ) ) -> ( ( ( M e. ZZ /\ N e. ZZ ) /\ -. ( M = 0 /\ N = 0 ) ) -> K <_ ( M gcd N ) ) ) |
| 10 | 9 | com12 | |- ( ( ( M e. ZZ /\ N e. ZZ ) /\ -. ( M = 0 /\ N = 0 ) ) -> ( ( K e. ZZ /\ ( K || M /\ K || N ) ) -> K <_ ( M gcd N ) ) ) |
| 11 | 10 | exp4b | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( -. ( M = 0 /\ N = 0 ) -> ( K e. ZZ -> ( ( K || M /\ K || N ) -> K <_ ( M gcd N ) ) ) ) ) |
| 12 | 11 | com23 | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( K e. ZZ -> ( -. ( M = 0 /\ N = 0 ) -> ( ( K || M /\ K || N ) -> K <_ ( M gcd N ) ) ) ) ) |
| 13 | 12 | impcom | |- ( ( K e. ZZ /\ ( M e. ZZ /\ N e. ZZ ) ) -> ( -. ( M = 0 /\ N = 0 ) -> ( ( K || M /\ K || N ) -> K <_ ( M gcd N ) ) ) ) |
| 14 | 13 | 3impb | |- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( -. ( M = 0 /\ N = 0 ) -> ( ( K || M /\ K || N ) -> K <_ ( M gcd N ) ) ) ) |
| 15 | 14 | imp | |- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ -. ( M = 0 /\ N = 0 ) ) -> ( ( K || M /\ K || N ) -> K <_ ( M gcd N ) ) ) |