This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Split a finite interval of integers into two parts. (Contributed by Thierry Arnoux, 2-May-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fzsplit3 | |- ( K e. ( M ... N ) -> ( M ... N ) = ( ( M ... ( K - 1 ) ) u. ( K ... N ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfzelz | |- ( x e. ( M ... N ) -> x e. ZZ ) |
|
| 2 | 1 | zred | |- ( x e. ( M ... N ) -> x e. RR ) |
| 3 | elfzelz | |- ( K e. ( M ... N ) -> K e. ZZ ) |
|
| 4 | 3 | zred | |- ( K e. ( M ... N ) -> K e. RR ) |
| 5 | 1red | |- ( K e. ( M ... N ) -> 1 e. RR ) |
|
| 6 | 4 5 | resubcld | |- ( K e. ( M ... N ) -> ( K - 1 ) e. RR ) |
| 7 | lelttric | |- ( ( x e. RR /\ ( K - 1 ) e. RR ) -> ( x <_ ( K - 1 ) \/ ( K - 1 ) < x ) ) |
|
| 8 | 2 6 7 | syl2anr | |- ( ( K e. ( M ... N ) /\ x e. ( M ... N ) ) -> ( x <_ ( K - 1 ) \/ ( K - 1 ) < x ) ) |
| 9 | elfzuz | |- ( x e. ( M ... N ) -> x e. ( ZZ>= ` M ) ) |
|
| 10 | 1zzd | |- ( K e. ( M ... N ) -> 1 e. ZZ ) |
|
| 11 | 3 10 | zsubcld | |- ( K e. ( M ... N ) -> ( K - 1 ) e. ZZ ) |
| 12 | elfz5 | |- ( ( x e. ( ZZ>= ` M ) /\ ( K - 1 ) e. ZZ ) -> ( x e. ( M ... ( K - 1 ) ) <-> x <_ ( K - 1 ) ) ) |
|
| 13 | 9 11 12 | syl2anr | |- ( ( K e. ( M ... N ) /\ x e. ( M ... N ) ) -> ( x e. ( M ... ( K - 1 ) ) <-> x <_ ( K - 1 ) ) ) |
| 14 | elfzuz3 | |- ( x e. ( M ... N ) -> N e. ( ZZ>= ` x ) ) |
|
| 15 | 14 | adantl | |- ( ( K e. ( M ... N ) /\ x e. ( M ... N ) ) -> N e. ( ZZ>= ` x ) ) |
| 16 | elfzuzb | |- ( x e. ( K ... N ) <-> ( x e. ( ZZ>= ` K ) /\ N e. ( ZZ>= ` x ) ) ) |
|
| 17 | 16 | rbaib | |- ( N e. ( ZZ>= ` x ) -> ( x e. ( K ... N ) <-> x e. ( ZZ>= ` K ) ) ) |
| 18 | 15 17 | syl | |- ( ( K e. ( M ... N ) /\ x e. ( M ... N ) ) -> ( x e. ( K ... N ) <-> x e. ( ZZ>= ` K ) ) ) |
| 19 | eluz | |- ( ( K e. ZZ /\ x e. ZZ ) -> ( x e. ( ZZ>= ` K ) <-> K <_ x ) ) |
|
| 20 | 3 1 19 | syl2an | |- ( ( K e. ( M ... N ) /\ x e. ( M ... N ) ) -> ( x e. ( ZZ>= ` K ) <-> K <_ x ) ) |
| 21 | zlem1lt | |- ( ( K e. ZZ /\ x e. ZZ ) -> ( K <_ x <-> ( K - 1 ) < x ) ) |
|
| 22 | 3 1 21 | syl2an | |- ( ( K e. ( M ... N ) /\ x e. ( M ... N ) ) -> ( K <_ x <-> ( K - 1 ) < x ) ) |
| 23 | 18 20 22 | 3bitrd | |- ( ( K e. ( M ... N ) /\ x e. ( M ... N ) ) -> ( x e. ( K ... N ) <-> ( K - 1 ) < x ) ) |
| 24 | 13 23 | orbi12d | |- ( ( K e. ( M ... N ) /\ x e. ( M ... N ) ) -> ( ( x e. ( M ... ( K - 1 ) ) \/ x e. ( K ... N ) ) <-> ( x <_ ( K - 1 ) \/ ( K - 1 ) < x ) ) ) |
| 25 | 8 24 | mpbird | |- ( ( K e. ( M ... N ) /\ x e. ( M ... N ) ) -> ( x e. ( M ... ( K - 1 ) ) \/ x e. ( K ... N ) ) ) |
| 26 | elfzuz | |- ( x e. ( M ... ( K - 1 ) ) -> x e. ( ZZ>= ` M ) ) |
|
| 27 | 26 | adantl | |- ( ( K e. ( M ... N ) /\ x e. ( M ... ( K - 1 ) ) ) -> x e. ( ZZ>= ` M ) ) |
| 28 | elfzuz3 | |- ( K e. ( M ... N ) -> N e. ( ZZ>= ` K ) ) |
|
| 29 | 28 | adantr | |- ( ( K e. ( M ... N ) /\ x e. ( M ... ( K - 1 ) ) ) -> N e. ( ZZ>= ` K ) ) |
| 30 | elfzuz3 | |- ( x e. ( M ... ( K - 1 ) ) -> ( K - 1 ) e. ( ZZ>= ` x ) ) |
|
| 31 | 30 | adantl | |- ( ( K e. ( M ... N ) /\ x e. ( M ... ( K - 1 ) ) ) -> ( K - 1 ) e. ( ZZ>= ` x ) ) |
| 32 | peano2uz | |- ( ( K - 1 ) e. ( ZZ>= ` x ) -> ( ( K - 1 ) + 1 ) e. ( ZZ>= ` x ) ) |
|
| 33 | 31 32 | syl | |- ( ( K e. ( M ... N ) /\ x e. ( M ... ( K - 1 ) ) ) -> ( ( K - 1 ) + 1 ) e. ( ZZ>= ` x ) ) |
| 34 | 4 | recnd | |- ( K e. ( M ... N ) -> K e. CC ) |
| 35 | 5 | recnd | |- ( K e. ( M ... N ) -> 1 e. CC ) |
| 36 | 34 35 | npcand | |- ( K e. ( M ... N ) -> ( ( K - 1 ) + 1 ) = K ) |
| 37 | 36 | eleq1d | |- ( K e. ( M ... N ) -> ( ( ( K - 1 ) + 1 ) e. ( ZZ>= ` x ) <-> K e. ( ZZ>= ` x ) ) ) |
| 38 | 37 | adantr | |- ( ( K e. ( M ... N ) /\ x e. ( M ... ( K - 1 ) ) ) -> ( ( ( K - 1 ) + 1 ) e. ( ZZ>= ` x ) <-> K e. ( ZZ>= ` x ) ) ) |
| 39 | 33 38 | mpbid | |- ( ( K e. ( M ... N ) /\ x e. ( M ... ( K - 1 ) ) ) -> K e. ( ZZ>= ` x ) ) |
| 40 | uztrn | |- ( ( N e. ( ZZ>= ` K ) /\ K e. ( ZZ>= ` x ) ) -> N e. ( ZZ>= ` x ) ) |
|
| 41 | 29 39 40 | syl2anc | |- ( ( K e. ( M ... N ) /\ x e. ( M ... ( K - 1 ) ) ) -> N e. ( ZZ>= ` x ) ) |
| 42 | elfzuzb | |- ( x e. ( M ... N ) <-> ( x e. ( ZZ>= ` M ) /\ N e. ( ZZ>= ` x ) ) ) |
|
| 43 | 27 41 42 | sylanbrc | |- ( ( K e. ( M ... N ) /\ x e. ( M ... ( K - 1 ) ) ) -> x e. ( M ... N ) ) |
| 44 | elfzuz | |- ( x e. ( K ... N ) -> x e. ( ZZ>= ` K ) ) |
|
| 45 | elfzuz | |- ( K e. ( M ... N ) -> K e. ( ZZ>= ` M ) ) |
|
| 46 | uztrn | |- ( ( x e. ( ZZ>= ` K ) /\ K e. ( ZZ>= ` M ) ) -> x e. ( ZZ>= ` M ) ) |
|
| 47 | 44 45 46 | syl2anr | |- ( ( K e. ( M ... N ) /\ x e. ( K ... N ) ) -> x e. ( ZZ>= ` M ) ) |
| 48 | elfzuz3 | |- ( x e. ( K ... N ) -> N e. ( ZZ>= ` x ) ) |
|
| 49 | 48 | adantl | |- ( ( K e. ( M ... N ) /\ x e. ( K ... N ) ) -> N e. ( ZZ>= ` x ) ) |
| 50 | 47 49 42 | sylanbrc | |- ( ( K e. ( M ... N ) /\ x e. ( K ... N ) ) -> x e. ( M ... N ) ) |
| 51 | 43 50 | jaodan | |- ( ( K e. ( M ... N ) /\ ( x e. ( M ... ( K - 1 ) ) \/ x e. ( K ... N ) ) ) -> x e. ( M ... N ) ) |
| 52 | 25 51 | impbida | |- ( K e. ( M ... N ) -> ( x e. ( M ... N ) <-> ( x e. ( M ... ( K - 1 ) ) \/ x e. ( K ... N ) ) ) ) |
| 53 | elun | |- ( x e. ( ( M ... ( K - 1 ) ) u. ( K ... N ) ) <-> ( x e. ( M ... ( K - 1 ) ) \/ x e. ( K ... N ) ) ) |
|
| 54 | 52 53 | bitr4di | |- ( K e. ( M ... N ) -> ( x e. ( M ... N ) <-> x e. ( ( M ... ( K - 1 ) ) u. ( K ... N ) ) ) ) |
| 55 | 54 | eqrdv | |- ( K e. ( M ... N ) -> ( M ... N ) = ( ( M ... ( K - 1 ) ) u. ( K ... N ) ) ) |