This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Upper set of the nonnegative integers. (Contributed by Thierry Arnoux, 25-Jan-2026)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nn0diffz0 | |- ( N e. NN0 -> ( NN0 \ ( 0 ... N ) ) = ( ZZ>= ` ( N + 1 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0uz | |- NN0 = ( ZZ>= ` 0 ) |
|
| 2 | peano2nn0 | |- ( N e. NN0 -> ( N + 1 ) e. NN0 ) |
|
| 3 | 2 1 | eleqtrdi | |- ( N e. NN0 -> ( N + 1 ) e. ( ZZ>= ` 0 ) ) |
| 4 | fzouzsplit | |- ( ( N + 1 ) e. ( ZZ>= ` 0 ) -> ( ZZ>= ` 0 ) = ( ( 0 ..^ ( N + 1 ) ) u. ( ZZ>= ` ( N + 1 ) ) ) ) |
|
| 5 | 3 4 | syl | |- ( N e. NN0 -> ( ZZ>= ` 0 ) = ( ( 0 ..^ ( N + 1 ) ) u. ( ZZ>= ` ( N + 1 ) ) ) ) |
| 6 | 1 5 | eqtrid | |- ( N e. NN0 -> NN0 = ( ( 0 ..^ ( N + 1 ) ) u. ( ZZ>= ` ( N + 1 ) ) ) ) |
| 7 | 6 | difeq1d | |- ( N e. NN0 -> ( NN0 \ ( 0 ... N ) ) = ( ( ( 0 ..^ ( N + 1 ) ) u. ( ZZ>= ` ( N + 1 ) ) ) \ ( 0 ... N ) ) ) |
| 8 | uncom | |- ( ( ZZ>= ` ( N + 1 ) ) u. ( 0 ... N ) ) = ( ( 0 ... N ) u. ( ZZ>= ` ( N + 1 ) ) ) |
|
| 9 | nn0z | |- ( N e. NN0 -> N e. ZZ ) |
|
| 10 | fzval3 | |- ( N e. ZZ -> ( 0 ... N ) = ( 0 ..^ ( N + 1 ) ) ) |
|
| 11 | 9 10 | syl | |- ( N e. NN0 -> ( 0 ... N ) = ( 0 ..^ ( N + 1 ) ) ) |
| 12 | 11 | uneq1d | |- ( N e. NN0 -> ( ( 0 ... N ) u. ( ZZ>= ` ( N + 1 ) ) ) = ( ( 0 ..^ ( N + 1 ) ) u. ( ZZ>= ` ( N + 1 ) ) ) ) |
| 13 | 8 12 | eqtrid | |- ( N e. NN0 -> ( ( ZZ>= ` ( N + 1 ) ) u. ( 0 ... N ) ) = ( ( 0 ..^ ( N + 1 ) ) u. ( ZZ>= ` ( N + 1 ) ) ) ) |
| 14 | 13 | difeq1d | |- ( N e. NN0 -> ( ( ( ZZ>= ` ( N + 1 ) ) u. ( 0 ... N ) ) \ ( 0 ... N ) ) = ( ( ( 0 ..^ ( N + 1 ) ) u. ( ZZ>= ` ( N + 1 ) ) ) \ ( 0 ... N ) ) ) |
| 15 | 11 | ineq2d | |- ( N e. NN0 -> ( ( ZZ>= ` ( N + 1 ) ) i^i ( 0 ... N ) ) = ( ( ZZ>= ` ( N + 1 ) ) i^i ( 0 ..^ ( N + 1 ) ) ) ) |
| 16 | fzouzdisj | |- ( ( 0 ..^ ( N + 1 ) ) i^i ( ZZ>= ` ( N + 1 ) ) ) = (/) |
|
| 17 | 16 | ineqcomi | |- ( ( ZZ>= ` ( N + 1 ) ) i^i ( 0 ..^ ( N + 1 ) ) ) = (/) |
| 18 | 15 17 | eqtrdi | |- ( N e. NN0 -> ( ( ZZ>= ` ( N + 1 ) ) i^i ( 0 ... N ) ) = (/) ) |
| 19 | undif5 | |- ( ( ( ZZ>= ` ( N + 1 ) ) i^i ( 0 ... N ) ) = (/) -> ( ( ( ZZ>= ` ( N + 1 ) ) u. ( 0 ... N ) ) \ ( 0 ... N ) ) = ( ZZ>= ` ( N + 1 ) ) ) |
|
| 20 | 18 19 | syl | |- ( N e. NN0 -> ( ( ( ZZ>= ` ( N + 1 ) ) u. ( 0 ... N ) ) \ ( 0 ... N ) ) = ( ZZ>= ` ( N + 1 ) ) ) |
| 21 | 7 14 20 | 3eqtr2d | |- ( N e. NN0 -> ( NN0 \ ( 0 ... N ) ) = ( ZZ>= ` ( N + 1 ) ) ) |