This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Integer ordering relation. (Contributed by NM, 13-Nov-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | zlem1lt | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( M <_ N <-> ( M - 1 ) < N ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | peano2zm | |- ( M e. ZZ -> ( M - 1 ) e. ZZ ) |
|
| 2 | zltp1le | |- ( ( ( M - 1 ) e. ZZ /\ N e. ZZ ) -> ( ( M - 1 ) < N <-> ( ( M - 1 ) + 1 ) <_ N ) ) |
|
| 3 | 1 2 | sylan | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( ( M - 1 ) < N <-> ( ( M - 1 ) + 1 ) <_ N ) ) |
| 4 | zcn | |- ( M e. ZZ -> M e. CC ) |
|
| 5 | ax-1cn | |- 1 e. CC |
|
| 6 | npcan | |- ( ( M e. CC /\ 1 e. CC ) -> ( ( M - 1 ) + 1 ) = M ) |
|
| 7 | 4 5 6 | sylancl | |- ( M e. ZZ -> ( ( M - 1 ) + 1 ) = M ) |
| 8 | 7 | adantr | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( ( M - 1 ) + 1 ) = M ) |
| 9 | 8 | breq1d | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( ( ( M - 1 ) + 1 ) <_ N <-> M <_ N ) ) |
| 10 | 3 9 | bitr2d | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( M <_ N <-> ( M - 1 ) < N ) ) |