This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Separate out the last term in a finite sum. (Contributed by Mario Carneiro, 13-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fsumm1.1 | |- ( ph -> N e. ( ZZ>= ` M ) ) |
|
| fsumm1.2 | |- ( ( ph /\ k e. ( M ... N ) ) -> A e. CC ) |
||
| fsumm1.3 | |- ( k = N -> A = B ) |
||
| Assertion | fzosump1 | |- ( ph -> sum_ k e. ( M ..^ ( N + 1 ) ) A = ( sum_ k e. ( M ..^ N ) A + B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fsumm1.1 | |- ( ph -> N e. ( ZZ>= ` M ) ) |
|
| 2 | fsumm1.2 | |- ( ( ph /\ k e. ( M ... N ) ) -> A e. CC ) |
|
| 3 | fsumm1.3 | |- ( k = N -> A = B ) |
|
| 4 | eluzelz | |- ( N e. ( ZZ>= ` M ) -> N e. ZZ ) |
|
| 5 | 1 4 | syl | |- ( ph -> N e. ZZ ) |
| 6 | fzoval | |- ( N e. ZZ -> ( M ..^ N ) = ( M ... ( N - 1 ) ) ) |
|
| 7 | 5 6 | syl | |- ( ph -> ( M ..^ N ) = ( M ... ( N - 1 ) ) ) |
| 8 | 7 | sumeq1d | |- ( ph -> sum_ k e. ( M ..^ N ) A = sum_ k e. ( M ... ( N - 1 ) ) A ) |
| 9 | 8 | oveq1d | |- ( ph -> ( sum_ k e. ( M ..^ N ) A + B ) = ( sum_ k e. ( M ... ( N - 1 ) ) A + B ) ) |
| 10 | 1 2 3 | fsumm1 | |- ( ph -> sum_ k e. ( M ... N ) A = ( sum_ k e. ( M ... ( N - 1 ) ) A + B ) ) |
| 11 | fzval3 | |- ( N e. ZZ -> ( M ... N ) = ( M ..^ ( N + 1 ) ) ) |
|
| 12 | 5 11 | syl | |- ( ph -> ( M ... N ) = ( M ..^ ( N + 1 ) ) ) |
| 13 | 12 | sumeq1d | |- ( ph -> sum_ k e. ( M ... N ) A = sum_ k e. ( M ..^ ( N + 1 ) ) A ) |
| 14 | 9 10 13 | 3eqtr2rd | |- ( ph -> sum_ k e. ( M ..^ ( N + 1 ) ) A = ( sum_ k e. ( M ..^ N ) A + B ) ) |