This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Expressing a closed integer range as a half-open integer range. (Contributed by Stefan O'Rear, 15-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fzval3 | |- ( N e. ZZ -> ( M ... N ) = ( M ..^ ( N + 1 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | peano2z | |- ( N e. ZZ -> ( N + 1 ) e. ZZ ) |
|
| 2 | fzoval | |- ( ( N + 1 ) e. ZZ -> ( M ..^ ( N + 1 ) ) = ( M ... ( ( N + 1 ) - 1 ) ) ) |
|
| 3 | 1 2 | syl | |- ( N e. ZZ -> ( M ..^ ( N + 1 ) ) = ( M ... ( ( N + 1 ) - 1 ) ) ) |
| 4 | zcn | |- ( N e. ZZ -> N e. CC ) |
|
| 5 | ax-1cn | |- 1 e. CC |
|
| 6 | pncan | |- ( ( N e. CC /\ 1 e. CC ) -> ( ( N + 1 ) - 1 ) = N ) |
|
| 7 | 4 5 6 | sylancl | |- ( N e. ZZ -> ( ( N + 1 ) - 1 ) = N ) |
| 8 | 7 | oveq2d | |- ( N e. ZZ -> ( M ... ( ( N + 1 ) - 1 ) ) = ( M ... N ) ) |
| 9 | 3 8 | eqtr2d | |- ( N e. ZZ -> ( M ... N ) = ( M ..^ ( N + 1 ) ) ) |