This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Separate out the last term in a finite sum. (Contributed by Mario Carneiro, 13-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fsumm1.1 | ⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) | |
| fsumm1.2 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) → 𝐴 ∈ ℂ ) | ||
| fsumm1.3 | ⊢ ( 𝑘 = 𝑁 → 𝐴 = 𝐵 ) | ||
| Assertion | fzosump1 | ⊢ ( 𝜑 → Σ 𝑘 ∈ ( 𝑀 ..^ ( 𝑁 + 1 ) ) 𝐴 = ( Σ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) 𝐴 + 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fsumm1.1 | ⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) | |
| 2 | fsumm1.2 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) → 𝐴 ∈ ℂ ) | |
| 3 | fsumm1.3 | ⊢ ( 𝑘 = 𝑁 → 𝐴 = 𝐵 ) | |
| 4 | eluzelz | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑁 ∈ ℤ ) | |
| 5 | 1 4 | syl | ⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
| 6 | fzoval | ⊢ ( 𝑁 ∈ ℤ → ( 𝑀 ..^ 𝑁 ) = ( 𝑀 ... ( 𝑁 − 1 ) ) ) | |
| 7 | 5 6 | syl | ⊢ ( 𝜑 → ( 𝑀 ..^ 𝑁 ) = ( 𝑀 ... ( 𝑁 − 1 ) ) ) |
| 8 | 7 | sumeq1d | ⊢ ( 𝜑 → Σ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) 𝐴 = Σ 𝑘 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) 𝐴 ) |
| 9 | 8 | oveq1d | ⊢ ( 𝜑 → ( Σ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) 𝐴 + 𝐵 ) = ( Σ 𝑘 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) 𝐴 + 𝐵 ) ) |
| 10 | 1 2 3 | fsumm1 | ⊢ ( 𝜑 → Σ 𝑘 ∈ ( 𝑀 ... 𝑁 ) 𝐴 = ( Σ 𝑘 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) 𝐴 + 𝐵 ) ) |
| 11 | fzval3 | ⊢ ( 𝑁 ∈ ℤ → ( 𝑀 ... 𝑁 ) = ( 𝑀 ..^ ( 𝑁 + 1 ) ) ) | |
| 12 | 5 11 | syl | ⊢ ( 𝜑 → ( 𝑀 ... 𝑁 ) = ( 𝑀 ..^ ( 𝑁 + 1 ) ) ) |
| 13 | 12 | sumeq1d | ⊢ ( 𝜑 → Σ 𝑘 ∈ ( 𝑀 ... 𝑁 ) 𝐴 = Σ 𝑘 ∈ ( 𝑀 ..^ ( 𝑁 + 1 ) ) 𝐴 ) |
| 14 | 9 10 13 | 3eqtr2rd | ⊢ ( 𝜑 → Σ 𝑘 ∈ ( 𝑀 ..^ ( 𝑁 + 1 ) ) 𝐴 = ( Σ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) 𝐴 + 𝐵 ) ) |