This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A finite simple graph is of finite size, i.e. has a finite number of edges. (Contributed by Alexander van der Vekens, 6-Jan-2018) (Revised by AV, 8-Nov-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fusgrfis | |- ( G e. FinUSGraph -> ( Edg ` G ) e. Fin ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | |- ( Vtx ` G ) = ( Vtx ` G ) |
|
| 2 | 1 | isfusgr | |- ( G e. FinUSGraph <-> ( G e. USGraph /\ ( Vtx ` G ) e. Fin ) ) |
| 3 | usgrop | |- ( G e. USGraph -> <. ( Vtx ` G ) , ( iEdg ` G ) >. e. USGraph ) |
|
| 4 | fvex | |- ( iEdg ` G ) e. _V |
|
| 5 | mptresid | |- ( _I |` { p e. ( Edg ` <. v , e >. ) | n e/ p } ) = ( q e. { p e. ( Edg ` <. v , e >. ) | n e/ p } |-> q ) |
|
| 6 | fvex | |- ( Edg ` <. v , e >. ) e. _V |
|
| 7 | 6 | mptrabex | |- ( q e. { p e. ( Edg ` <. v , e >. ) | n e/ p } |-> q ) e. _V |
| 8 | 5 7 | eqeltri | |- ( _I |` { p e. ( Edg ` <. v , e >. ) | n e/ p } ) e. _V |
| 9 | eleq1 | |- ( e = ( iEdg ` G ) -> ( e e. Fin <-> ( iEdg ` G ) e. Fin ) ) |
|
| 10 | 9 | adantl | |- ( ( v = ( Vtx ` G ) /\ e = ( iEdg ` G ) ) -> ( e e. Fin <-> ( iEdg ` G ) e. Fin ) ) |
| 11 | eleq1 | |- ( e = f -> ( e e. Fin <-> f e. Fin ) ) |
|
| 12 | 11 | adantl | |- ( ( v = w /\ e = f ) -> ( e e. Fin <-> f e. Fin ) ) |
| 13 | vex | |- v e. _V |
|
| 14 | vex | |- e e. _V |
|
| 15 | 13 14 | opvtxfvi | |- ( Vtx ` <. v , e >. ) = v |
| 16 | 15 | eqcomi | |- v = ( Vtx ` <. v , e >. ) |
| 17 | eqid | |- ( Edg ` <. v , e >. ) = ( Edg ` <. v , e >. ) |
|
| 18 | eqid | |- { p e. ( Edg ` <. v , e >. ) | n e/ p } = { p e. ( Edg ` <. v , e >. ) | n e/ p } |
|
| 19 | eqid | |- <. ( v \ { n } ) , ( _I |` { p e. ( Edg ` <. v , e >. ) | n e/ p } ) >. = <. ( v \ { n } ) , ( _I |` { p e. ( Edg ` <. v , e >. ) | n e/ p } ) >. |
|
| 20 | 16 17 18 19 | usgrres1 | |- ( ( <. v , e >. e. USGraph /\ n e. v ) -> <. ( v \ { n } ) , ( _I |` { p e. ( Edg ` <. v , e >. ) | n e/ p } ) >. e. USGraph ) |
| 21 | eleq1 | |- ( f = ( _I |` { p e. ( Edg ` <. v , e >. ) | n e/ p } ) -> ( f e. Fin <-> ( _I |` { p e. ( Edg ` <. v , e >. ) | n e/ p } ) e. Fin ) ) |
|
| 22 | 21 | adantl | |- ( ( w = ( v \ { n } ) /\ f = ( _I |` { p e. ( Edg ` <. v , e >. ) | n e/ p } ) ) -> ( f e. Fin <-> ( _I |` { p e. ( Edg ` <. v , e >. ) | n e/ p } ) e. Fin ) ) |
| 23 | 13 14 | pm3.2i | |- ( v e. _V /\ e e. _V ) |
| 24 | fusgrfisbase | |- ( ( ( v e. _V /\ e e. _V ) /\ <. v , e >. e. USGraph /\ ( # ` v ) = 0 ) -> e e. Fin ) |
|
| 25 | 23 24 | mp3an1 | |- ( ( <. v , e >. e. USGraph /\ ( # ` v ) = 0 ) -> e e. Fin ) |
| 26 | simpl | |- ( ( ( v e. _V /\ e e. _V ) /\ ( ( y + 1 ) e. NN0 /\ ( <. v , e >. e. USGraph /\ ( # ` v ) = ( y + 1 ) /\ n e. v ) ) ) -> ( v e. _V /\ e e. _V ) ) |
|
| 27 | simprr1 | |- ( ( ( v e. _V /\ e e. _V ) /\ ( ( y + 1 ) e. NN0 /\ ( <. v , e >. e. USGraph /\ ( # ` v ) = ( y + 1 ) /\ n e. v ) ) ) -> <. v , e >. e. USGraph ) |
|
| 28 | eleq1 | |- ( ( # ` v ) = ( y + 1 ) -> ( ( # ` v ) e. NN0 <-> ( y + 1 ) e. NN0 ) ) |
|
| 29 | hashclb | |- ( v e. _V -> ( v e. Fin <-> ( # ` v ) e. NN0 ) ) |
|
| 30 | 29 | biimprd | |- ( v e. _V -> ( ( # ` v ) e. NN0 -> v e. Fin ) ) |
| 31 | 30 | adantr | |- ( ( v e. _V /\ e e. _V ) -> ( ( # ` v ) e. NN0 -> v e. Fin ) ) |
| 32 | 31 | com12 | |- ( ( # ` v ) e. NN0 -> ( ( v e. _V /\ e e. _V ) -> v e. Fin ) ) |
| 33 | 28 32 | biimtrrdi | |- ( ( # ` v ) = ( y + 1 ) -> ( ( y + 1 ) e. NN0 -> ( ( v e. _V /\ e e. _V ) -> v e. Fin ) ) ) |
| 34 | 33 | 3ad2ant2 | |- ( ( <. v , e >. e. USGraph /\ ( # ` v ) = ( y + 1 ) /\ n e. v ) -> ( ( y + 1 ) e. NN0 -> ( ( v e. _V /\ e e. _V ) -> v e. Fin ) ) ) |
| 35 | 34 | impcom | |- ( ( ( y + 1 ) e. NN0 /\ ( <. v , e >. e. USGraph /\ ( # ` v ) = ( y + 1 ) /\ n e. v ) ) -> ( ( v e. _V /\ e e. _V ) -> v e. Fin ) ) |
| 36 | 35 | impcom | |- ( ( ( v e. _V /\ e e. _V ) /\ ( ( y + 1 ) e. NN0 /\ ( <. v , e >. e. USGraph /\ ( # ` v ) = ( y + 1 ) /\ n e. v ) ) ) -> v e. Fin ) |
| 37 | opfusgr | |- ( ( v e. _V /\ e e. _V ) -> ( <. v , e >. e. FinUSGraph <-> ( <. v , e >. e. USGraph /\ v e. Fin ) ) ) |
|
| 38 | 37 | adantr | |- ( ( ( v e. _V /\ e e. _V ) /\ ( ( y + 1 ) e. NN0 /\ ( <. v , e >. e. USGraph /\ ( # ` v ) = ( y + 1 ) /\ n e. v ) ) ) -> ( <. v , e >. e. FinUSGraph <-> ( <. v , e >. e. USGraph /\ v e. Fin ) ) ) |
| 39 | 27 36 38 | mpbir2and | |- ( ( ( v e. _V /\ e e. _V ) /\ ( ( y + 1 ) e. NN0 /\ ( <. v , e >. e. USGraph /\ ( # ` v ) = ( y + 1 ) /\ n e. v ) ) ) -> <. v , e >. e. FinUSGraph ) |
| 40 | simprr3 | |- ( ( ( v e. _V /\ e e. _V ) /\ ( ( y + 1 ) e. NN0 /\ ( <. v , e >. e. USGraph /\ ( # ` v ) = ( y + 1 ) /\ n e. v ) ) ) -> n e. v ) |
|
| 41 | 26 39 40 | 3jca | |- ( ( ( v e. _V /\ e e. _V ) /\ ( ( y + 1 ) e. NN0 /\ ( <. v , e >. e. USGraph /\ ( # ` v ) = ( y + 1 ) /\ n e. v ) ) ) -> ( ( v e. _V /\ e e. _V ) /\ <. v , e >. e. FinUSGraph /\ n e. v ) ) |
| 42 | 23 41 | mpan | |- ( ( ( y + 1 ) e. NN0 /\ ( <. v , e >. e. USGraph /\ ( # ` v ) = ( y + 1 ) /\ n e. v ) ) -> ( ( v e. _V /\ e e. _V ) /\ <. v , e >. e. FinUSGraph /\ n e. v ) ) |
| 43 | fusgrfisstep | |- ( ( ( v e. _V /\ e e. _V ) /\ <. v , e >. e. FinUSGraph /\ n e. v ) -> ( ( _I |` { p e. ( Edg ` <. v , e >. ) | n e/ p } ) e. Fin -> e e. Fin ) ) |
|
| 44 | 42 43 | syl | |- ( ( ( y + 1 ) e. NN0 /\ ( <. v , e >. e. USGraph /\ ( # ` v ) = ( y + 1 ) /\ n e. v ) ) -> ( ( _I |` { p e. ( Edg ` <. v , e >. ) | n e/ p } ) e. Fin -> e e. Fin ) ) |
| 45 | 44 | imp | |- ( ( ( ( y + 1 ) e. NN0 /\ ( <. v , e >. e. USGraph /\ ( # ` v ) = ( y + 1 ) /\ n e. v ) ) /\ ( _I |` { p e. ( Edg ` <. v , e >. ) | n e/ p } ) e. Fin ) -> e e. Fin ) |
| 46 | 4 8 10 12 20 22 25 45 | opfi1ind | |- ( ( <. ( Vtx ` G ) , ( iEdg ` G ) >. e. USGraph /\ ( Vtx ` G ) e. Fin ) -> ( iEdg ` G ) e. Fin ) |
| 47 | 3 46 | sylan | |- ( ( G e. USGraph /\ ( Vtx ` G ) e. Fin ) -> ( iEdg ` G ) e. Fin ) |
| 48 | eqid | |- ( iEdg ` G ) = ( iEdg ` G ) |
|
| 49 | eqid | |- ( Edg ` G ) = ( Edg ` G ) |
|
| 50 | 48 49 | usgredgffibi | |- ( G e. USGraph -> ( ( Edg ` G ) e. Fin <-> ( iEdg ` G ) e. Fin ) ) |
| 51 | 50 | adantr | |- ( ( G e. USGraph /\ ( Vtx ` G ) e. Fin ) -> ( ( Edg ` G ) e. Fin <-> ( iEdg ` G ) e. Fin ) ) |
| 52 | 47 51 | mpbird | |- ( ( G e. USGraph /\ ( Vtx ` G ) e. Fin ) -> ( Edg ` G ) e. Fin ) |
| 53 | 2 52 | sylbi | |- ( G e. FinUSGraph -> ( Edg ` G ) e. Fin ) |