This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A finite simple graph is a finite pseudograph of finite size. (Contributed by AV, 27-Dec-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fusgrfupgrfs.v | |- V = ( Vtx ` G ) |
|
| fusgrfupgrfs.i | |- I = ( iEdg ` G ) |
||
| Assertion | fusgrfupgrfs | |- ( G e. FinUSGraph -> ( G e. UPGraph /\ V e. Fin /\ I e. Fin ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fusgrfupgrfs.v | |- V = ( Vtx ` G ) |
|
| 2 | fusgrfupgrfs.i | |- I = ( iEdg ` G ) |
|
| 3 | fusgrusgr | |- ( G e. FinUSGraph -> G e. USGraph ) |
|
| 4 | usgrupgr | |- ( G e. USGraph -> G e. UPGraph ) |
|
| 5 | 3 4 | syl | |- ( G e. FinUSGraph -> G e. UPGraph ) |
| 6 | 1 | fusgrvtxfi | |- ( G e. FinUSGraph -> V e. Fin ) |
| 7 | fusgrfis | |- ( G e. FinUSGraph -> ( Edg ` G ) e. Fin ) |
|
| 8 | eqid | |- ( Edg ` G ) = ( Edg ` G ) |
|
| 9 | 2 8 | usgredgffibi | |- ( G e. USGraph -> ( ( Edg ` G ) e. Fin <-> I e. Fin ) ) |
| 10 | 3 9 | syl | |- ( G e. FinUSGraph -> ( ( Edg ` G ) e. Fin <-> I e. Fin ) ) |
| 11 | 7 10 | mpbid | |- ( G e. FinUSGraph -> I e. Fin ) |
| 12 | 5 6 11 | 3jca | |- ( G e. FinUSGraph -> ( G e. UPGraph /\ V e. Fin /\ I e. Fin ) ) |