This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The number of edges in a simple graph is finite iff its edge function is finite. (Contributed by AV, 10-Jan-2020) (Revised by AV, 22-Oct-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | usgredgffibi.I | |- I = ( iEdg ` G ) |
|
| usgredgffibi.e | |- E = ( Edg ` G ) |
||
| Assertion | usgredgffibi | |- ( G e. USGraph -> ( E e. Fin <-> I e. Fin ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | usgredgffibi.I | |- I = ( iEdg ` G ) |
|
| 2 | usgredgffibi.e | |- E = ( Edg ` G ) |
|
| 3 | edgval | |- ( Edg ` G ) = ran ( iEdg ` G ) |
|
| 4 | 1 | eqcomi | |- ( iEdg ` G ) = I |
| 5 | 4 | rneqi | |- ran ( iEdg ` G ) = ran I |
| 6 | 2 3 5 | 3eqtri | |- E = ran I |
| 7 | 6 | eleq1i | |- ( E e. Fin <-> ran I e. Fin ) |
| 8 | 1 | fvexi | |- I e. _V |
| 9 | eqid | |- ( Vtx ` G ) = ( Vtx ` G ) |
|
| 10 | 9 1 | usgrfs | |- ( G e. USGraph -> I : dom I -1-1-> { x e. ~P ( Vtx ` G ) | ( # ` x ) = 2 } ) |
| 11 | f1vrnfibi | |- ( ( I e. _V /\ I : dom I -1-1-> { x e. ~P ( Vtx ` G ) | ( # ` x ) = 2 } ) -> ( I e. Fin <-> ran I e. Fin ) ) |
|
| 12 | 8 10 11 | sylancr | |- ( G e. USGraph -> ( I e. Fin <-> ran I e. Fin ) ) |
| 13 | 7 12 | bitr4id | |- ( G e. USGraph -> ( E e. Fin <-> I e. Fin ) ) |