This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A finite simple graph represented as ordered pair. (Contributed by AV, 23-Oct-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | opfusgr | |- ( ( V e. X /\ E e. Y ) -> ( <. V , E >. e. FinUSGraph <-> ( <. V , E >. e. USGraph /\ V e. Fin ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | |- ( Vtx ` <. V , E >. ) = ( Vtx ` <. V , E >. ) |
|
| 2 | 1 | isfusgr | |- ( <. V , E >. e. FinUSGraph <-> ( <. V , E >. e. USGraph /\ ( Vtx ` <. V , E >. ) e. Fin ) ) |
| 3 | opvtxfv | |- ( ( V e. X /\ E e. Y ) -> ( Vtx ` <. V , E >. ) = V ) |
|
| 4 | 3 | eleq1d | |- ( ( V e. X /\ E e. Y ) -> ( ( Vtx ` <. V , E >. ) e. Fin <-> V e. Fin ) ) |
| 5 | 4 | anbi2d | |- ( ( V e. X /\ E e. Y ) -> ( ( <. V , E >. e. USGraph /\ ( Vtx ` <. V , E >. ) e. Fin ) <-> ( <. V , E >. e. USGraph /\ V e. Fin ) ) ) |
| 6 | 2 5 | bitrid | |- ( ( V e. X /\ E e. Y ) -> ( <. V , E >. e. FinUSGraph <-> ( <. V , E >. e. USGraph /\ V e. Fin ) ) ) |