This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Induction step in fusgrfis : In a finite simple graph, the number of edges is finite if the number of edges not containing one of the vertices is finite. (Contributed by Alexander van der Vekens, 5-Jan-2018) (Revised by AV, 23-Oct-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fusgrfisstep | |- ( ( ( V e. X /\ E e. Y ) /\ <. V , E >. e. FinUSGraph /\ N e. V ) -> ( ( _I |` { p e. ( Edg ` <. V , E >. ) | N e/ p } ) e. Fin -> E e. Fin ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | residfi | |- ( ( _I |` { p e. ( Edg ` <. V , E >. ) | N e/ p } ) e. Fin <-> { p e. ( Edg ` <. V , E >. ) | N e/ p } e. Fin ) |
|
| 2 | fusgrusgr | |- ( <. V , E >. e. FinUSGraph -> <. V , E >. e. USGraph ) |
|
| 3 | eqid | |- ( iEdg ` <. V , E >. ) = ( iEdg ` <. V , E >. ) |
|
| 4 | eqid | |- ( Edg ` <. V , E >. ) = ( Edg ` <. V , E >. ) |
|
| 5 | 3 4 | usgredgffibi | |- ( <. V , E >. e. USGraph -> ( ( Edg ` <. V , E >. ) e. Fin <-> ( iEdg ` <. V , E >. ) e. Fin ) ) |
| 6 | 2 5 | syl | |- ( <. V , E >. e. FinUSGraph -> ( ( Edg ` <. V , E >. ) e. Fin <-> ( iEdg ` <. V , E >. ) e. Fin ) ) |
| 7 | 6 | 3ad2ant2 | |- ( ( ( V e. X /\ E e. Y ) /\ <. V , E >. e. FinUSGraph /\ N e. V ) -> ( ( Edg ` <. V , E >. ) e. Fin <-> ( iEdg ` <. V , E >. ) e. Fin ) ) |
| 8 | simp2 | |- ( ( ( V e. X /\ E e. Y ) /\ <. V , E >. e. FinUSGraph /\ N e. V ) -> <. V , E >. e. FinUSGraph ) |
|
| 9 | opvtxfv | |- ( ( V e. X /\ E e. Y ) -> ( Vtx ` <. V , E >. ) = V ) |
|
| 10 | 9 | eqcomd | |- ( ( V e. X /\ E e. Y ) -> V = ( Vtx ` <. V , E >. ) ) |
| 11 | 10 | eleq2d | |- ( ( V e. X /\ E e. Y ) -> ( N e. V <-> N e. ( Vtx ` <. V , E >. ) ) ) |
| 12 | 11 | biimpa | |- ( ( ( V e. X /\ E e. Y ) /\ N e. V ) -> N e. ( Vtx ` <. V , E >. ) ) |
| 13 | eqid | |- ( Vtx ` <. V , E >. ) = ( Vtx ` <. V , E >. ) |
|
| 14 | eqid | |- { p e. ( Edg ` <. V , E >. ) | N e/ p } = { p e. ( Edg ` <. V , E >. ) | N e/ p } |
|
| 15 | 13 4 14 | usgrfilem | |- ( ( <. V , E >. e. FinUSGraph /\ N e. ( Vtx ` <. V , E >. ) ) -> ( ( Edg ` <. V , E >. ) e. Fin <-> { p e. ( Edg ` <. V , E >. ) | N e/ p } e. Fin ) ) |
| 16 | 8 12 15 | 3imp3i2an | |- ( ( ( V e. X /\ E e. Y ) /\ <. V , E >. e. FinUSGraph /\ N e. V ) -> ( ( Edg ` <. V , E >. ) e. Fin <-> { p e. ( Edg ` <. V , E >. ) | N e/ p } e. Fin ) ) |
| 17 | opiedgfv | |- ( ( V e. X /\ E e. Y ) -> ( iEdg ` <. V , E >. ) = E ) |
|
| 18 | 17 | eleq1d | |- ( ( V e. X /\ E e. Y ) -> ( ( iEdg ` <. V , E >. ) e. Fin <-> E e. Fin ) ) |
| 19 | 18 | 3ad2ant1 | |- ( ( ( V e. X /\ E e. Y ) /\ <. V , E >. e. FinUSGraph /\ N e. V ) -> ( ( iEdg ` <. V , E >. ) e. Fin <-> E e. Fin ) ) |
| 20 | 7 16 19 | 3bitr3rd | |- ( ( ( V e. X /\ E e. Y ) /\ <. V , E >. e. FinUSGraph /\ N e. V ) -> ( E e. Fin <-> { p e. ( Edg ` <. V , E >. ) | N e/ p } e. Fin ) ) |
| 21 | 20 | biimprd | |- ( ( ( V e. X /\ E e. Y ) /\ <. V , E >. e. FinUSGraph /\ N e. V ) -> ( { p e. ( Edg ` <. V , E >. ) | N e/ p } e. Fin -> E e. Fin ) ) |
| 22 | 1 21 | biimtrid | |- ( ( ( V e. X /\ E e. Y ) /\ <. V , E >. e. FinUSGraph /\ N e. V ) -> ( ( _I |` { p e. ( Edg ` <. V , E >. ) | N e/ p } ) e. Fin -> E e. Fin ) ) |