This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Induction base for fusgrfis . Main work is done in uhgr0v0e . (Contributed by Alexander van der Vekens, 5-Jan-2018) (Revised by AV, 23-Oct-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fusgrfisbase | |- ( ( ( V e. X /\ E e. Y ) /\ <. V , E >. e. USGraph /\ ( # ` V ) = 0 ) -> E e. Fin ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | usgruhgr | |- ( <. V , E >. e. USGraph -> <. V , E >. e. UHGraph ) |
|
| 2 | 1 | 3ad2ant2 | |- ( ( ( V e. X /\ E e. Y ) /\ <. V , E >. e. USGraph /\ ( # ` V ) = 0 ) -> <. V , E >. e. UHGraph ) |
| 3 | opvtxfv | |- ( ( V e. X /\ E e. Y ) -> ( Vtx ` <. V , E >. ) = V ) |
|
| 4 | 3 | 3ad2ant1 | |- ( ( ( V e. X /\ E e. Y ) /\ <. V , E >. e. USGraph /\ ( # ` V ) = 0 ) -> ( Vtx ` <. V , E >. ) = V ) |
| 5 | hasheq0 | |- ( V e. X -> ( ( # ` V ) = 0 <-> V = (/) ) ) |
|
| 6 | 5 | biimpd | |- ( V e. X -> ( ( # ` V ) = 0 -> V = (/) ) ) |
| 7 | 6 | adantr | |- ( ( V e. X /\ E e. Y ) -> ( ( # ` V ) = 0 -> V = (/) ) ) |
| 8 | 7 | a1d | |- ( ( V e. X /\ E e. Y ) -> ( <. V , E >. e. USGraph -> ( ( # ` V ) = 0 -> V = (/) ) ) ) |
| 9 | 8 | 3imp | |- ( ( ( V e. X /\ E e. Y ) /\ <. V , E >. e. USGraph /\ ( # ` V ) = 0 ) -> V = (/) ) |
| 10 | 4 9 | eqtrd | |- ( ( ( V e. X /\ E e. Y ) /\ <. V , E >. e. USGraph /\ ( # ` V ) = 0 ) -> ( Vtx ` <. V , E >. ) = (/) ) |
| 11 | eqid | |- ( Vtx ` <. V , E >. ) = ( Vtx ` <. V , E >. ) |
|
| 12 | eqid | |- ( Edg ` <. V , E >. ) = ( Edg ` <. V , E >. ) |
|
| 13 | 11 12 | uhgr0v0e | |- ( ( <. V , E >. e. UHGraph /\ ( Vtx ` <. V , E >. ) = (/) ) -> ( Edg ` <. V , E >. ) = (/) ) |
| 14 | 2 10 13 | syl2anc | |- ( ( ( V e. X /\ E e. Y ) /\ <. V , E >. e. USGraph /\ ( # ` V ) = 0 ) -> ( Edg ` <. V , E >. ) = (/) ) |
| 15 | 0fi | |- (/) e. Fin |
|
| 16 | 14 15 | eqeltrdi | |- ( ( ( V e. X /\ E e. Y ) /\ <. V , E >. e. USGraph /\ ( # ` V ) = 0 ) -> ( Edg ` <. V , E >. ) e. Fin ) |
| 17 | eqid | |- ( iEdg ` <. V , E >. ) = ( iEdg ` <. V , E >. ) |
|
| 18 | 17 12 | usgredgffibi | |- ( <. V , E >. e. USGraph -> ( ( Edg ` <. V , E >. ) e. Fin <-> ( iEdg ` <. V , E >. ) e. Fin ) ) |
| 19 | 18 | 3ad2ant2 | |- ( ( ( V e. X /\ E e. Y ) /\ <. V , E >. e. USGraph /\ ( # ` V ) = 0 ) -> ( ( Edg ` <. V , E >. ) e. Fin <-> ( iEdg ` <. V , E >. ) e. Fin ) ) |
| 20 | opiedgfv | |- ( ( V e. X /\ E e. Y ) -> ( iEdg ` <. V , E >. ) = E ) |
|
| 21 | 20 | 3ad2ant1 | |- ( ( ( V e. X /\ E e. Y ) /\ <. V , E >. e. USGraph /\ ( # ` V ) = 0 ) -> ( iEdg ` <. V , E >. ) = E ) |
| 22 | 21 | eleq1d | |- ( ( ( V e. X /\ E e. Y ) /\ <. V , E >. e. USGraph /\ ( # ` V ) = 0 ) -> ( ( iEdg ` <. V , E >. ) e. Fin <-> E e. Fin ) ) |
| 23 | 19 22 | bitrd | |- ( ( ( V e. X /\ E e. Y ) /\ <. V , E >. e. USGraph /\ ( # ` V ) = 0 ) -> ( ( Edg ` <. V , E >. ) e. Fin <-> E e. Fin ) ) |
| 24 | 16 23 | mpbid | |- ( ( ( V e. X /\ E e. Y ) /\ <. V , E >. e. USGraph /\ ( # ` V ) = 0 ) -> E e. Fin ) |