This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The uniqueness of a function into a set with at most one element. (Contributed by Zhi Wang, 1-Oct-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mofeu.1 | |- G = ( A X. B ) |
|
| mofeu.2 | |- ( ph -> ( B = (/) -> A = (/) ) ) |
||
| mofeu.3 | |- ( ph -> E* x x e. B ) |
||
| Assertion | mofeu | |- ( ph -> ( F : A --> B <-> F = G ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mofeu.1 | |- G = ( A X. B ) |
|
| 2 | mofeu.2 | |- ( ph -> ( B = (/) -> A = (/) ) ) |
|
| 3 | mofeu.3 | |- ( ph -> E* x x e. B ) |
|
| 4 | 2 | imp | |- ( ( ph /\ B = (/) ) -> A = (/) ) |
| 5 | f00 | |- ( F : A --> (/) <-> ( F = (/) /\ A = (/) ) ) |
|
| 6 | 5 | rbaib | |- ( A = (/) -> ( F : A --> (/) <-> F = (/) ) ) |
| 7 | 4 6 | syl | |- ( ( ph /\ B = (/) ) -> ( F : A --> (/) <-> F = (/) ) ) |
| 8 | feq3 | |- ( B = (/) -> ( F : A --> B <-> F : A --> (/) ) ) |
|
| 9 | 8 | adantl | |- ( ( ph /\ B = (/) ) -> ( F : A --> B <-> F : A --> (/) ) ) |
| 10 | xpeq2 | |- ( B = (/) -> ( A X. B ) = ( A X. (/) ) ) |
|
| 11 | xp0 | |- ( A X. (/) ) = (/) |
|
| 12 | 10 11 | eqtrdi | |- ( B = (/) -> ( A X. B ) = (/) ) |
| 13 | 1 12 | eqtrid | |- ( B = (/) -> G = (/) ) |
| 14 | 13 | adantl | |- ( ( ph /\ B = (/) ) -> G = (/) ) |
| 15 | 14 | eqeq2d | |- ( ( ph /\ B = (/) ) -> ( F = G <-> F = (/) ) ) |
| 16 | 7 9 15 | 3bitr4d | |- ( ( ph /\ B = (/) ) -> ( F : A --> B <-> F = G ) ) |
| 17 | 19.42v | |- ( E. y ( ph /\ B = { y } ) <-> ( ph /\ E. y B = { y } ) ) |
|
| 18 | fconst2g | |- ( y e. _V -> ( F : A --> { y } <-> F = ( A X. { y } ) ) ) |
|
| 19 | 18 | elv | |- ( F : A --> { y } <-> F = ( A X. { y } ) ) |
| 20 | feq3 | |- ( B = { y } -> ( F : A --> B <-> F : A --> { y } ) ) |
|
| 21 | xpeq2 | |- ( B = { y } -> ( A X. B ) = ( A X. { y } ) ) |
|
| 22 | 21 | eqeq2d | |- ( B = { y } -> ( F = ( A X. B ) <-> F = ( A X. { y } ) ) ) |
| 23 | 20 22 | bibi12d | |- ( B = { y } -> ( ( F : A --> B <-> F = ( A X. B ) ) <-> ( F : A --> { y } <-> F = ( A X. { y } ) ) ) ) |
| 24 | 19 23 | mpbiri | |- ( B = { y } -> ( F : A --> B <-> F = ( A X. B ) ) ) |
| 25 | 1 | eqeq2i | |- ( F = G <-> F = ( A X. B ) ) |
| 26 | 24 25 | bitr4di | |- ( B = { y } -> ( F : A --> B <-> F = G ) ) |
| 27 | 26 | adantl | |- ( ( ph /\ B = { y } ) -> ( F : A --> B <-> F = G ) ) |
| 28 | 27 | exlimiv | |- ( E. y ( ph /\ B = { y } ) -> ( F : A --> B <-> F = G ) ) |
| 29 | 17 28 | sylbir | |- ( ( ph /\ E. y B = { y } ) -> ( F : A --> B <-> F = G ) ) |
| 30 | mo0sn | |- ( E* x x e. B <-> ( B = (/) \/ E. y B = { y } ) ) |
|
| 31 | 3 30 | sylib | |- ( ph -> ( B = (/) \/ E. y B = { y } ) ) |
| 32 | 16 29 31 | mpjaodan | |- ( ph -> ( F : A --> B <-> F = G ) ) |