This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The category of one functor to a thin category is terminal. (Contributed by Zhi Wang, 17-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | funcsn.q | |- Q = ( C FuncCat D ) |
|
| funcsn.f | |- ( ph -> F e. V ) |
||
| funcsn.c | |- ( ph -> ( C Func D ) = { F } ) |
||
| funcsn.d | |- ( ph -> D e. ThinCat ) |
||
| Assertion | funcsn | |- ( ph -> Q e. TermCat ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funcsn.q | |- Q = ( C FuncCat D ) |
|
| 2 | funcsn.f | |- ( ph -> F e. V ) |
|
| 3 | funcsn.c | |- ( ph -> ( C Func D ) = { F } ) |
|
| 4 | funcsn.d | |- ( ph -> D e. ThinCat ) |
|
| 5 | 1 | fucbas | |- ( C Func D ) = ( Base ` Q ) |
| 6 | 5 | a1i | |- ( ph -> ( C Func D ) = ( Base ` Q ) ) |
| 7 | eqid | |- ( C Nat D ) = ( C Nat D ) |
|
| 8 | 1 7 | fuchom | |- ( C Nat D ) = ( Hom ` Q ) |
| 9 | 8 | a1i | |- ( ph -> ( C Nat D ) = ( Hom ` Q ) ) |
| 10 | simprl | |- ( ( ph /\ ( a e. ( f ( C Nat D ) g ) /\ b e. ( f ( C Nat D ) g ) ) ) -> a e. ( f ( C Nat D ) g ) ) |
|
| 11 | 7 10 | nat1st2nd | |- ( ( ph /\ ( a e. ( f ( C Nat D ) g ) /\ b e. ( f ( C Nat D ) g ) ) ) -> a e. ( <. ( 1st ` f ) , ( 2nd ` f ) >. ( C Nat D ) <. ( 1st ` g ) , ( 2nd ` g ) >. ) ) |
| 12 | eqid | |- ( Base ` C ) = ( Base ` C ) |
|
| 13 | 7 11 12 | natfn | |- ( ( ph /\ ( a e. ( f ( C Nat D ) g ) /\ b e. ( f ( C Nat D ) g ) ) ) -> a Fn ( Base ` C ) ) |
| 14 | simprr | |- ( ( ph /\ ( a e. ( f ( C Nat D ) g ) /\ b e. ( f ( C Nat D ) g ) ) ) -> b e. ( f ( C Nat D ) g ) ) |
|
| 15 | 7 14 | nat1st2nd | |- ( ( ph /\ ( a e. ( f ( C Nat D ) g ) /\ b e. ( f ( C Nat D ) g ) ) ) -> b e. ( <. ( 1st ` f ) , ( 2nd ` f ) >. ( C Nat D ) <. ( 1st ` g ) , ( 2nd ` g ) >. ) ) |
| 16 | 7 15 12 | natfn | |- ( ( ph /\ ( a e. ( f ( C Nat D ) g ) /\ b e. ( f ( C Nat D ) g ) ) ) -> b Fn ( Base ` C ) ) |
| 17 | eqid | |- ( Base ` D ) = ( Base ` D ) |
|
| 18 | 7 11 | natrcl2 | |- ( ( ph /\ ( a e. ( f ( C Nat D ) g ) /\ b e. ( f ( C Nat D ) g ) ) ) -> ( 1st ` f ) ( C Func D ) ( 2nd ` f ) ) |
| 19 | 12 17 18 | funcf1 | |- ( ( ph /\ ( a e. ( f ( C Nat D ) g ) /\ b e. ( f ( C Nat D ) g ) ) ) -> ( 1st ` f ) : ( Base ` C ) --> ( Base ` D ) ) |
| 20 | 19 | ffvelcdmda | |- ( ( ( ph /\ ( a e. ( f ( C Nat D ) g ) /\ b e. ( f ( C Nat D ) g ) ) ) /\ x e. ( Base ` C ) ) -> ( ( 1st ` f ) ` x ) e. ( Base ` D ) ) |
| 21 | 7 11 | natrcl3 | |- ( ( ph /\ ( a e. ( f ( C Nat D ) g ) /\ b e. ( f ( C Nat D ) g ) ) ) -> ( 1st ` g ) ( C Func D ) ( 2nd ` g ) ) |
| 22 | 12 17 21 | funcf1 | |- ( ( ph /\ ( a e. ( f ( C Nat D ) g ) /\ b e. ( f ( C Nat D ) g ) ) ) -> ( 1st ` g ) : ( Base ` C ) --> ( Base ` D ) ) |
| 23 | 22 | ffvelcdmda | |- ( ( ( ph /\ ( a e. ( f ( C Nat D ) g ) /\ b e. ( f ( C Nat D ) g ) ) ) /\ x e. ( Base ` C ) ) -> ( ( 1st ` g ) ` x ) e. ( Base ` D ) ) |
| 24 | 11 | adantr | |- ( ( ( ph /\ ( a e. ( f ( C Nat D ) g ) /\ b e. ( f ( C Nat D ) g ) ) ) /\ x e. ( Base ` C ) ) -> a e. ( <. ( 1st ` f ) , ( 2nd ` f ) >. ( C Nat D ) <. ( 1st ` g ) , ( 2nd ` g ) >. ) ) |
| 25 | eqid | |- ( Hom ` D ) = ( Hom ` D ) |
|
| 26 | simpr | |- ( ( ( ph /\ ( a e. ( f ( C Nat D ) g ) /\ b e. ( f ( C Nat D ) g ) ) ) /\ x e. ( Base ` C ) ) -> x e. ( Base ` C ) ) |
|
| 27 | 7 24 12 25 26 | natcl | |- ( ( ( ph /\ ( a e. ( f ( C Nat D ) g ) /\ b e. ( f ( C Nat D ) g ) ) ) /\ x e. ( Base ` C ) ) -> ( a ` x ) e. ( ( ( 1st ` f ) ` x ) ( Hom ` D ) ( ( 1st ` g ) ` x ) ) ) |
| 28 | 15 | adantr | |- ( ( ( ph /\ ( a e. ( f ( C Nat D ) g ) /\ b e. ( f ( C Nat D ) g ) ) ) /\ x e. ( Base ` C ) ) -> b e. ( <. ( 1st ` f ) , ( 2nd ` f ) >. ( C Nat D ) <. ( 1st ` g ) , ( 2nd ` g ) >. ) ) |
| 29 | 7 28 12 25 26 | natcl | |- ( ( ( ph /\ ( a e. ( f ( C Nat D ) g ) /\ b e. ( f ( C Nat D ) g ) ) ) /\ x e. ( Base ` C ) ) -> ( b ` x ) e. ( ( ( 1st ` f ) ` x ) ( Hom ` D ) ( ( 1st ` g ) ` x ) ) ) |
| 30 | 4 | ad2antrr | |- ( ( ( ph /\ ( a e. ( f ( C Nat D ) g ) /\ b e. ( f ( C Nat D ) g ) ) ) /\ x e. ( Base ` C ) ) -> D e. ThinCat ) |
| 31 | 20 23 27 29 17 25 30 | thincmo2 | |- ( ( ( ph /\ ( a e. ( f ( C Nat D ) g ) /\ b e. ( f ( C Nat D ) g ) ) ) /\ x e. ( Base ` C ) ) -> ( a ` x ) = ( b ` x ) ) |
| 32 | 13 16 31 | eqfnfvd | |- ( ( ph /\ ( a e. ( f ( C Nat D ) g ) /\ b e. ( f ( C Nat D ) g ) ) ) -> a = b ) |
| 33 | 32 | ralrimivva | |- ( ph -> A. a e. ( f ( C Nat D ) g ) A. b e. ( f ( C Nat D ) g ) a = b ) |
| 34 | moel | |- ( E* a a e. ( f ( C Nat D ) g ) <-> A. a e. ( f ( C Nat D ) g ) A. b e. ( f ( C Nat D ) g ) a = b ) |
|
| 35 | 33 34 | sylibr | |- ( ph -> E* a a e. ( f ( C Nat D ) g ) ) |
| 36 | 35 | adantr | |- ( ( ph /\ ( f e. ( C Func D ) /\ g e. ( C Func D ) ) ) -> E* a a e. ( f ( C Nat D ) g ) ) |
| 37 | snidg | |- ( F e. V -> F e. { F } ) |
|
| 38 | 2 37 | syl | |- ( ph -> F e. { F } ) |
| 39 | 38 3 | eleqtrrd | |- ( ph -> F e. ( C Func D ) ) |
| 40 | 39 | func1st2nd | |- ( ph -> ( 1st ` F ) ( C Func D ) ( 2nd ` F ) ) |
| 41 | 40 | funcrcl2 | |- ( ph -> C e. Cat ) |
| 42 | 4 | thinccd | |- ( ph -> D e. Cat ) |
| 43 | 1 41 42 | fuccat | |- ( ph -> Q e. Cat ) |
| 44 | 6 9 36 43 | isthincd | |- ( ph -> Q e. ThinCat ) |
| 45 | sneq | |- ( f = F -> { f } = { F } ) |
|
| 46 | 45 | eqeq2d | |- ( f = F -> ( ( C Func D ) = { f } <-> ( C Func D ) = { F } ) ) |
| 47 | 2 3 46 | spcedv | |- ( ph -> E. f ( C Func D ) = { f } ) |
| 48 | 5 | istermc | |- ( Q e. TermCat <-> ( Q e. ThinCat /\ E. f ( C Func D ) = { f } ) ) |
| 49 | 44 47 48 | sylanbrc | |- ( ph -> Q e. TermCat ) |