This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The category of one functor to a thin category is terminal. (Contributed by Zhi Wang, 17-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | funcsn.q | ⊢ 𝑄 = ( 𝐶 FuncCat 𝐷 ) | |
| funcsn.f | ⊢ ( 𝜑 → 𝐹 ∈ 𝑉 ) | ||
| funcsn.c | ⊢ ( 𝜑 → ( 𝐶 Func 𝐷 ) = { 𝐹 } ) | ||
| funcsn.d | ⊢ ( 𝜑 → 𝐷 ∈ ThinCat ) | ||
| Assertion | funcsn | ⊢ ( 𝜑 → 𝑄 ∈ TermCat ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funcsn.q | ⊢ 𝑄 = ( 𝐶 FuncCat 𝐷 ) | |
| 2 | funcsn.f | ⊢ ( 𝜑 → 𝐹 ∈ 𝑉 ) | |
| 3 | funcsn.c | ⊢ ( 𝜑 → ( 𝐶 Func 𝐷 ) = { 𝐹 } ) | |
| 4 | funcsn.d | ⊢ ( 𝜑 → 𝐷 ∈ ThinCat ) | |
| 5 | 1 | fucbas | ⊢ ( 𝐶 Func 𝐷 ) = ( Base ‘ 𝑄 ) |
| 6 | 5 | a1i | ⊢ ( 𝜑 → ( 𝐶 Func 𝐷 ) = ( Base ‘ 𝑄 ) ) |
| 7 | eqid | ⊢ ( 𝐶 Nat 𝐷 ) = ( 𝐶 Nat 𝐷 ) | |
| 8 | 1 7 | fuchom | ⊢ ( 𝐶 Nat 𝐷 ) = ( Hom ‘ 𝑄 ) |
| 9 | 8 | a1i | ⊢ ( 𝜑 → ( 𝐶 Nat 𝐷 ) = ( Hom ‘ 𝑄 ) ) |
| 10 | simprl | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝑓 ( 𝐶 Nat 𝐷 ) 𝑔 ) ∧ 𝑏 ∈ ( 𝑓 ( 𝐶 Nat 𝐷 ) 𝑔 ) ) ) → 𝑎 ∈ ( 𝑓 ( 𝐶 Nat 𝐷 ) 𝑔 ) ) | |
| 11 | 7 10 | nat1st2nd | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝑓 ( 𝐶 Nat 𝐷 ) 𝑔 ) ∧ 𝑏 ∈ ( 𝑓 ( 𝐶 Nat 𝐷 ) 𝑔 ) ) ) → 𝑎 ∈ ( 〈 ( 1st ‘ 𝑓 ) , ( 2nd ‘ 𝑓 ) 〉 ( 𝐶 Nat 𝐷 ) 〈 ( 1st ‘ 𝑔 ) , ( 2nd ‘ 𝑔 ) 〉 ) ) |
| 12 | eqid | ⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) | |
| 13 | 7 11 12 | natfn | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝑓 ( 𝐶 Nat 𝐷 ) 𝑔 ) ∧ 𝑏 ∈ ( 𝑓 ( 𝐶 Nat 𝐷 ) 𝑔 ) ) ) → 𝑎 Fn ( Base ‘ 𝐶 ) ) |
| 14 | simprr | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝑓 ( 𝐶 Nat 𝐷 ) 𝑔 ) ∧ 𝑏 ∈ ( 𝑓 ( 𝐶 Nat 𝐷 ) 𝑔 ) ) ) → 𝑏 ∈ ( 𝑓 ( 𝐶 Nat 𝐷 ) 𝑔 ) ) | |
| 15 | 7 14 | nat1st2nd | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝑓 ( 𝐶 Nat 𝐷 ) 𝑔 ) ∧ 𝑏 ∈ ( 𝑓 ( 𝐶 Nat 𝐷 ) 𝑔 ) ) ) → 𝑏 ∈ ( 〈 ( 1st ‘ 𝑓 ) , ( 2nd ‘ 𝑓 ) 〉 ( 𝐶 Nat 𝐷 ) 〈 ( 1st ‘ 𝑔 ) , ( 2nd ‘ 𝑔 ) 〉 ) ) |
| 16 | 7 15 12 | natfn | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝑓 ( 𝐶 Nat 𝐷 ) 𝑔 ) ∧ 𝑏 ∈ ( 𝑓 ( 𝐶 Nat 𝐷 ) 𝑔 ) ) ) → 𝑏 Fn ( Base ‘ 𝐶 ) ) |
| 17 | eqid | ⊢ ( Base ‘ 𝐷 ) = ( Base ‘ 𝐷 ) | |
| 18 | 7 11 | natrcl2 | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝑓 ( 𝐶 Nat 𝐷 ) 𝑔 ) ∧ 𝑏 ∈ ( 𝑓 ( 𝐶 Nat 𝐷 ) 𝑔 ) ) ) → ( 1st ‘ 𝑓 ) ( 𝐶 Func 𝐷 ) ( 2nd ‘ 𝑓 ) ) |
| 19 | 12 17 18 | funcf1 | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝑓 ( 𝐶 Nat 𝐷 ) 𝑔 ) ∧ 𝑏 ∈ ( 𝑓 ( 𝐶 Nat 𝐷 ) 𝑔 ) ) ) → ( 1st ‘ 𝑓 ) : ( Base ‘ 𝐶 ) ⟶ ( Base ‘ 𝐷 ) ) |
| 20 | 19 | ffvelcdmda | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝑓 ( 𝐶 Nat 𝐷 ) 𝑔 ) ∧ 𝑏 ∈ ( 𝑓 ( 𝐶 Nat 𝐷 ) 𝑔 ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( ( 1st ‘ 𝑓 ) ‘ 𝑥 ) ∈ ( Base ‘ 𝐷 ) ) |
| 21 | 7 11 | natrcl3 | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝑓 ( 𝐶 Nat 𝐷 ) 𝑔 ) ∧ 𝑏 ∈ ( 𝑓 ( 𝐶 Nat 𝐷 ) 𝑔 ) ) ) → ( 1st ‘ 𝑔 ) ( 𝐶 Func 𝐷 ) ( 2nd ‘ 𝑔 ) ) |
| 22 | 12 17 21 | funcf1 | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝑓 ( 𝐶 Nat 𝐷 ) 𝑔 ) ∧ 𝑏 ∈ ( 𝑓 ( 𝐶 Nat 𝐷 ) 𝑔 ) ) ) → ( 1st ‘ 𝑔 ) : ( Base ‘ 𝐶 ) ⟶ ( Base ‘ 𝐷 ) ) |
| 23 | 22 | ffvelcdmda | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝑓 ( 𝐶 Nat 𝐷 ) 𝑔 ) ∧ 𝑏 ∈ ( 𝑓 ( 𝐶 Nat 𝐷 ) 𝑔 ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( ( 1st ‘ 𝑔 ) ‘ 𝑥 ) ∈ ( Base ‘ 𝐷 ) ) |
| 24 | 11 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝑓 ( 𝐶 Nat 𝐷 ) 𝑔 ) ∧ 𝑏 ∈ ( 𝑓 ( 𝐶 Nat 𝐷 ) 𝑔 ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → 𝑎 ∈ ( 〈 ( 1st ‘ 𝑓 ) , ( 2nd ‘ 𝑓 ) 〉 ( 𝐶 Nat 𝐷 ) 〈 ( 1st ‘ 𝑔 ) , ( 2nd ‘ 𝑔 ) 〉 ) ) |
| 25 | eqid | ⊢ ( Hom ‘ 𝐷 ) = ( Hom ‘ 𝐷 ) | |
| 26 | simpr | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝑓 ( 𝐶 Nat 𝐷 ) 𝑔 ) ∧ 𝑏 ∈ ( 𝑓 ( 𝐶 Nat 𝐷 ) 𝑔 ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → 𝑥 ∈ ( Base ‘ 𝐶 ) ) | |
| 27 | 7 24 12 25 26 | natcl | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝑓 ( 𝐶 Nat 𝐷 ) 𝑔 ) ∧ 𝑏 ∈ ( 𝑓 ( 𝐶 Nat 𝐷 ) 𝑔 ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( 𝑎 ‘ 𝑥 ) ∈ ( ( ( 1st ‘ 𝑓 ) ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( ( 1st ‘ 𝑔 ) ‘ 𝑥 ) ) ) |
| 28 | 15 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝑓 ( 𝐶 Nat 𝐷 ) 𝑔 ) ∧ 𝑏 ∈ ( 𝑓 ( 𝐶 Nat 𝐷 ) 𝑔 ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → 𝑏 ∈ ( 〈 ( 1st ‘ 𝑓 ) , ( 2nd ‘ 𝑓 ) 〉 ( 𝐶 Nat 𝐷 ) 〈 ( 1st ‘ 𝑔 ) , ( 2nd ‘ 𝑔 ) 〉 ) ) |
| 29 | 7 28 12 25 26 | natcl | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝑓 ( 𝐶 Nat 𝐷 ) 𝑔 ) ∧ 𝑏 ∈ ( 𝑓 ( 𝐶 Nat 𝐷 ) 𝑔 ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( 𝑏 ‘ 𝑥 ) ∈ ( ( ( 1st ‘ 𝑓 ) ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( ( 1st ‘ 𝑔 ) ‘ 𝑥 ) ) ) |
| 30 | 4 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝑓 ( 𝐶 Nat 𝐷 ) 𝑔 ) ∧ 𝑏 ∈ ( 𝑓 ( 𝐶 Nat 𝐷 ) 𝑔 ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → 𝐷 ∈ ThinCat ) |
| 31 | 20 23 27 29 17 25 30 | thincmo2 | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝑓 ( 𝐶 Nat 𝐷 ) 𝑔 ) ∧ 𝑏 ∈ ( 𝑓 ( 𝐶 Nat 𝐷 ) 𝑔 ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( 𝑎 ‘ 𝑥 ) = ( 𝑏 ‘ 𝑥 ) ) |
| 32 | 13 16 31 | eqfnfvd | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝑓 ( 𝐶 Nat 𝐷 ) 𝑔 ) ∧ 𝑏 ∈ ( 𝑓 ( 𝐶 Nat 𝐷 ) 𝑔 ) ) ) → 𝑎 = 𝑏 ) |
| 33 | 32 | ralrimivva | ⊢ ( 𝜑 → ∀ 𝑎 ∈ ( 𝑓 ( 𝐶 Nat 𝐷 ) 𝑔 ) ∀ 𝑏 ∈ ( 𝑓 ( 𝐶 Nat 𝐷 ) 𝑔 ) 𝑎 = 𝑏 ) |
| 34 | moel | ⊢ ( ∃* 𝑎 𝑎 ∈ ( 𝑓 ( 𝐶 Nat 𝐷 ) 𝑔 ) ↔ ∀ 𝑎 ∈ ( 𝑓 ( 𝐶 Nat 𝐷 ) 𝑔 ) ∀ 𝑏 ∈ ( 𝑓 ( 𝐶 Nat 𝐷 ) 𝑔 ) 𝑎 = 𝑏 ) | |
| 35 | 33 34 | sylibr | ⊢ ( 𝜑 → ∃* 𝑎 𝑎 ∈ ( 𝑓 ( 𝐶 Nat 𝐷 ) 𝑔 ) ) |
| 36 | 35 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐶 Func 𝐷 ) ∧ 𝑔 ∈ ( 𝐶 Func 𝐷 ) ) ) → ∃* 𝑎 𝑎 ∈ ( 𝑓 ( 𝐶 Nat 𝐷 ) 𝑔 ) ) |
| 37 | snidg | ⊢ ( 𝐹 ∈ 𝑉 → 𝐹 ∈ { 𝐹 } ) | |
| 38 | 2 37 | syl | ⊢ ( 𝜑 → 𝐹 ∈ { 𝐹 } ) |
| 39 | 38 3 | eleqtrrd | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝐶 Func 𝐷 ) ) |
| 40 | 39 | func1st2nd | ⊢ ( 𝜑 → ( 1st ‘ 𝐹 ) ( 𝐶 Func 𝐷 ) ( 2nd ‘ 𝐹 ) ) |
| 41 | 40 | funcrcl2 | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) |
| 42 | 4 | thinccd | ⊢ ( 𝜑 → 𝐷 ∈ Cat ) |
| 43 | 1 41 42 | fuccat | ⊢ ( 𝜑 → 𝑄 ∈ Cat ) |
| 44 | 6 9 36 43 | isthincd | ⊢ ( 𝜑 → 𝑄 ∈ ThinCat ) |
| 45 | sneq | ⊢ ( 𝑓 = 𝐹 → { 𝑓 } = { 𝐹 } ) | |
| 46 | 45 | eqeq2d | ⊢ ( 𝑓 = 𝐹 → ( ( 𝐶 Func 𝐷 ) = { 𝑓 } ↔ ( 𝐶 Func 𝐷 ) = { 𝐹 } ) ) |
| 47 | 2 3 46 | spcedv | ⊢ ( 𝜑 → ∃ 𝑓 ( 𝐶 Func 𝐷 ) = { 𝑓 } ) |
| 48 | 5 | istermc | ⊢ ( 𝑄 ∈ TermCat ↔ ( 𝑄 ∈ ThinCat ∧ ∃ 𝑓 ( 𝐶 Func 𝐷 ) = { 𝑓 } ) ) |
| 49 | 44 47 48 | sylanbrc | ⊢ ( 𝜑 → 𝑄 ∈ TermCat ) |