This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Universal quantification over a class abstraction. (Contributed by Jeff Madsen, 10-Jun-2010) Reduce axiom usage. (Revised by GG, 2-Nov-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ralab.1 | |- ( y = x -> ( ph <-> ps ) ) |
|
| Assertion | ralab | |- ( A. x e. { y | ph } ch <-> A. x ( ps -> ch ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralab.1 | |- ( y = x -> ( ph <-> ps ) ) |
|
| 2 | df-ral | |- ( A. x e. { y | ph } ch <-> A. x ( x e. { y | ph } -> ch ) ) |
|
| 3 | df-clab | |- ( x e. { y | ph } <-> [ x / y ] ph ) |
|
| 4 | 1 | sbievw | |- ( [ x / y ] ph <-> ps ) |
| 5 | 3 4 | bitri | |- ( x e. { y | ph } <-> ps ) |
| 6 | 5 | imbi1i | |- ( ( x e. { y | ph } -> ch ) <-> ( ps -> ch ) ) |
| 7 | biid | |- ( ( ps -> ch ) <-> ( ps -> ch ) ) |
|
| 8 | 6 7 | bitri | |- ( ( x e. { y | ph } -> ch ) <-> ( ps -> ch ) ) |
| 9 | 8 | albii | |- ( A. x ( x e. { y | ph } -> ch ) <-> A. x ( ps -> ch ) ) |
| 10 | 2 9 | bitri | |- ( A. x e. { y | ph } ch <-> A. x ( ps -> ch ) ) |