This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The converse of a class is a function iff the class is single-rooted, which means that for any y in the range of A there is at most one x such that x A y . Definition of single-rooted in Enderton p. 43. See funcnv2 for a simpler version. (Contributed by NM, 13-Aug-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | funcnv | |- ( Fun `' A <-> A. y e. ran A E* x x A y ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex | |- x e. _V |
|
| 2 | vex | |- y e. _V |
|
| 3 | 1 2 | brelrn | |- ( x A y -> y e. ran A ) |
| 4 | 3 | pm4.71ri | |- ( x A y <-> ( y e. ran A /\ x A y ) ) |
| 5 | 4 | mobii | |- ( E* x x A y <-> E* x ( y e. ran A /\ x A y ) ) |
| 6 | moanimv | |- ( E* x ( y e. ran A /\ x A y ) <-> ( y e. ran A -> E* x x A y ) ) |
|
| 7 | 5 6 | bitri | |- ( E* x x A y <-> ( y e. ran A -> E* x x A y ) ) |
| 8 | 7 | albii | |- ( A. y E* x x A y <-> A. y ( y e. ran A -> E* x x A y ) ) |
| 9 | funcnv2 | |- ( Fun `' A <-> A. y E* x x A y ) |
|
| 10 | df-ral | |- ( A. y e. ran A E* x x A y <-> A. y ( y e. ran A -> E* x x A y ) ) |
|
| 11 | 8 9 10 | 3bitr4i | |- ( Fun `' A <-> A. y e. ran A E* x x A y ) |