This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The union of a chain (with respect to inclusion) of one-to-one functions is a one-to-one function. (Contributed by NM, 11-Aug-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fun11uni | |- ( A. f e. A ( ( Fun f /\ Fun `' f ) /\ A. g e. A ( f C_ g \/ g C_ f ) ) -> ( Fun U. A /\ Fun `' U. A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl | |- ( ( Fun f /\ Fun `' f ) -> Fun f ) |
|
| 2 | 1 | anim1i | |- ( ( ( Fun f /\ Fun `' f ) /\ A. g e. A ( f C_ g \/ g C_ f ) ) -> ( Fun f /\ A. g e. A ( f C_ g \/ g C_ f ) ) ) |
| 3 | 2 | ralimi | |- ( A. f e. A ( ( Fun f /\ Fun `' f ) /\ A. g e. A ( f C_ g \/ g C_ f ) ) -> A. f e. A ( Fun f /\ A. g e. A ( f C_ g \/ g C_ f ) ) ) |
| 4 | fununi | |- ( A. f e. A ( Fun f /\ A. g e. A ( f C_ g \/ g C_ f ) ) -> Fun U. A ) |
|
| 5 | 3 4 | syl | |- ( A. f e. A ( ( Fun f /\ Fun `' f ) /\ A. g e. A ( f C_ g \/ g C_ f ) ) -> Fun U. A ) |
| 6 | simpr | |- ( ( Fun f /\ Fun `' f ) -> Fun `' f ) |
|
| 7 | 6 | anim1i | |- ( ( ( Fun f /\ Fun `' f ) /\ A. g e. A ( f C_ g \/ g C_ f ) ) -> ( Fun `' f /\ A. g e. A ( f C_ g \/ g C_ f ) ) ) |
| 8 | 7 | ralimi | |- ( A. f e. A ( ( Fun f /\ Fun `' f ) /\ A. g e. A ( f C_ g \/ g C_ f ) ) -> A. f e. A ( Fun `' f /\ A. g e. A ( f C_ g \/ g C_ f ) ) ) |
| 9 | funcnvuni | |- ( A. f e. A ( Fun `' f /\ A. g e. A ( f C_ g \/ g C_ f ) ) -> Fun `' U. A ) |
|
| 10 | 8 9 | syl | |- ( A. f e. A ( ( Fun f /\ Fun `' f ) /\ A. g e. A ( f C_ g \/ g C_ f ) ) -> Fun `' U. A ) |
| 11 | 5 10 | jca | |- ( A. f e. A ( ( Fun f /\ Fun `' f ) /\ A. g e. A ( f C_ g \/ g C_ f ) ) -> ( Fun U. A /\ Fun `' U. A ) ) |