This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The converse of a class union is the (indexed) union of the converses of its members. (Contributed by NM, 11-Aug-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cnvuni | |- `' U. A = U_ x e. A `' x |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elcnv2 | |- ( y e. `' U. A <-> E. z E. w ( y = <. z , w >. /\ <. w , z >. e. U. A ) ) |
|
| 2 | eluni2 | |- ( <. w , z >. e. U. A <-> E. x e. A <. w , z >. e. x ) |
|
| 3 | 2 | anbi2i | |- ( ( y = <. z , w >. /\ <. w , z >. e. U. A ) <-> ( y = <. z , w >. /\ E. x e. A <. w , z >. e. x ) ) |
| 4 | r19.42v | |- ( E. x e. A ( y = <. z , w >. /\ <. w , z >. e. x ) <-> ( y = <. z , w >. /\ E. x e. A <. w , z >. e. x ) ) |
|
| 5 | 3 4 | bitr4i | |- ( ( y = <. z , w >. /\ <. w , z >. e. U. A ) <-> E. x e. A ( y = <. z , w >. /\ <. w , z >. e. x ) ) |
| 6 | 5 | 2exbii | |- ( E. z E. w ( y = <. z , w >. /\ <. w , z >. e. U. A ) <-> E. z E. w E. x e. A ( y = <. z , w >. /\ <. w , z >. e. x ) ) |
| 7 | elcnv2 | |- ( y e. `' x <-> E. z E. w ( y = <. z , w >. /\ <. w , z >. e. x ) ) |
|
| 8 | 7 | rexbii | |- ( E. x e. A y e. `' x <-> E. x e. A E. z E. w ( y = <. z , w >. /\ <. w , z >. e. x ) ) |
| 9 | rexcom4 | |- ( E. x e. A E. z E. w ( y = <. z , w >. /\ <. w , z >. e. x ) <-> E. z E. x e. A E. w ( y = <. z , w >. /\ <. w , z >. e. x ) ) |
|
| 10 | rexcom4 | |- ( E. x e. A E. w ( y = <. z , w >. /\ <. w , z >. e. x ) <-> E. w E. x e. A ( y = <. z , w >. /\ <. w , z >. e. x ) ) |
|
| 11 | 10 | exbii | |- ( E. z E. x e. A E. w ( y = <. z , w >. /\ <. w , z >. e. x ) <-> E. z E. w E. x e. A ( y = <. z , w >. /\ <. w , z >. e. x ) ) |
| 12 | 8 9 11 | 3bitrri | |- ( E. z E. w E. x e. A ( y = <. z , w >. /\ <. w , z >. e. x ) <-> E. x e. A y e. `' x ) |
| 13 | 1 6 12 | 3bitri | |- ( y e. `' U. A <-> E. x e. A y e. `' x ) |
| 14 | eliun | |- ( y e. U_ x e. A `' x <-> E. x e. A y e. `' x ) |
|
| 15 | 13 14 | bitr4i | |- ( y e. `' U. A <-> y e. U_ x e. A `' x ) |
| 16 | 15 | eqriv | |- `' U. A = U_ x e. A `' x |