This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The identity arrow in the category of extensible structures is the identity function of base sets. (Contributed by AV, 8-Mar-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | estrccat.c | |- C = ( ExtStrCat ` U ) |
|
| estrcid.o | |- .1. = ( Id ` C ) |
||
| estrcid.u | |- ( ph -> U e. V ) |
||
| estrcid.x | |- ( ph -> X e. U ) |
||
| Assertion | estrcid | |- ( ph -> ( .1. ` X ) = ( _I |` ( Base ` X ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | estrccat.c | |- C = ( ExtStrCat ` U ) |
|
| 2 | estrcid.o | |- .1. = ( Id ` C ) |
|
| 3 | estrcid.u | |- ( ph -> U e. V ) |
|
| 4 | estrcid.x | |- ( ph -> X e. U ) |
|
| 5 | 1 | estrccatid | |- ( U e. V -> ( C e. Cat /\ ( Id ` C ) = ( x e. U |-> ( _I |` ( Base ` x ) ) ) ) ) |
| 6 | 3 5 | syl | |- ( ph -> ( C e. Cat /\ ( Id ` C ) = ( x e. U |-> ( _I |` ( Base ` x ) ) ) ) ) |
| 7 | 6 | simprd | |- ( ph -> ( Id ` C ) = ( x e. U |-> ( _I |` ( Base ` x ) ) ) ) |
| 8 | 2 7 | eqtrid | |- ( ph -> .1. = ( x e. U |-> ( _I |` ( Base ` x ) ) ) ) |
| 9 | fveq2 | |- ( x = X -> ( Base ` x ) = ( Base ` X ) ) |
|
| 10 | 9 | reseq2d | |- ( x = X -> ( _I |` ( Base ` x ) ) = ( _I |` ( Base ` X ) ) ) |
| 11 | 10 | adantl | |- ( ( ph /\ x = X ) -> ( _I |` ( Base ` x ) ) = ( _I |` ( Base ` X ) ) ) |
| 12 | fvexd | |- ( ph -> ( Base ` X ) e. _V ) |
|
| 13 | 12 | resiexd | |- ( ph -> ( _I |` ( Base ` X ) ) e. _V ) |
| 14 | 8 11 4 13 | fvmptd | |- ( ph -> ( .1. ` X ) = ( _I |` ( Base ` X ) ) ) |