This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma 5 for funcestrcsetc . (Contributed by AV, 23-Mar-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | funcestrcsetc.e | |- E = ( ExtStrCat ` U ) |
|
| funcestrcsetc.s | |- S = ( SetCat ` U ) |
||
| funcestrcsetc.b | |- B = ( Base ` E ) |
||
| funcestrcsetc.c | |- C = ( Base ` S ) |
||
| funcestrcsetc.u | |- ( ph -> U e. WUni ) |
||
| funcestrcsetc.f | |- ( ph -> F = ( x e. B |-> ( Base ` x ) ) ) |
||
| funcestrcsetc.g | |- ( ph -> G = ( x e. B , y e. B |-> ( _I |` ( ( Base ` y ) ^m ( Base ` x ) ) ) ) ) |
||
| funcestrcsetc.m | |- M = ( Base ` X ) |
||
| funcestrcsetc.n | |- N = ( Base ` Y ) |
||
| Assertion | funcestrcsetclem5 | |- ( ( ph /\ ( X e. B /\ Y e. B ) ) -> ( X G Y ) = ( _I |` ( N ^m M ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funcestrcsetc.e | |- E = ( ExtStrCat ` U ) |
|
| 2 | funcestrcsetc.s | |- S = ( SetCat ` U ) |
|
| 3 | funcestrcsetc.b | |- B = ( Base ` E ) |
|
| 4 | funcestrcsetc.c | |- C = ( Base ` S ) |
|
| 5 | funcestrcsetc.u | |- ( ph -> U e. WUni ) |
|
| 6 | funcestrcsetc.f | |- ( ph -> F = ( x e. B |-> ( Base ` x ) ) ) |
|
| 7 | funcestrcsetc.g | |- ( ph -> G = ( x e. B , y e. B |-> ( _I |` ( ( Base ` y ) ^m ( Base ` x ) ) ) ) ) |
|
| 8 | funcestrcsetc.m | |- M = ( Base ` X ) |
|
| 9 | funcestrcsetc.n | |- N = ( Base ` Y ) |
|
| 10 | 7 | adantr | |- ( ( ph /\ ( X e. B /\ Y e. B ) ) -> G = ( x e. B , y e. B |-> ( _I |` ( ( Base ` y ) ^m ( Base ` x ) ) ) ) ) |
| 11 | fveq2 | |- ( y = Y -> ( Base ` y ) = ( Base ` Y ) ) |
|
| 12 | fveq2 | |- ( x = X -> ( Base ` x ) = ( Base ` X ) ) |
|
| 13 | 11 12 | oveqan12rd | |- ( ( x = X /\ y = Y ) -> ( ( Base ` y ) ^m ( Base ` x ) ) = ( ( Base ` Y ) ^m ( Base ` X ) ) ) |
| 14 | 9 8 | oveq12i | |- ( N ^m M ) = ( ( Base ` Y ) ^m ( Base ` X ) ) |
| 15 | 13 14 | eqtr4di | |- ( ( x = X /\ y = Y ) -> ( ( Base ` y ) ^m ( Base ` x ) ) = ( N ^m M ) ) |
| 16 | 15 | reseq2d | |- ( ( x = X /\ y = Y ) -> ( _I |` ( ( Base ` y ) ^m ( Base ` x ) ) ) = ( _I |` ( N ^m M ) ) ) |
| 17 | 16 | adantl | |- ( ( ( ph /\ ( X e. B /\ Y e. B ) ) /\ ( x = X /\ y = Y ) ) -> ( _I |` ( ( Base ` y ) ^m ( Base ` x ) ) ) = ( _I |` ( N ^m M ) ) ) |
| 18 | simprl | |- ( ( ph /\ ( X e. B /\ Y e. B ) ) -> X e. B ) |
|
| 19 | simprr | |- ( ( ph /\ ( X e. B /\ Y e. B ) ) -> Y e. B ) |
|
| 20 | ovexd | |- ( ( ph /\ ( X e. B /\ Y e. B ) ) -> ( N ^m M ) e. _V ) |
|
| 21 | 20 | resiexd | |- ( ( ph /\ ( X e. B /\ Y e. B ) ) -> ( _I |` ( N ^m M ) ) e. _V ) |
| 22 | 10 17 18 19 21 | ovmpod | |- ( ( ph /\ ( X e. B /\ Y e. B ) ) -> ( X G Y ) = ( _I |` ( N ^m M ) ) ) |