This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The identity arrow in the category of sets is the identity function. (Contributed by Mario Carneiro, 3-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | setccat.c | |- C = ( SetCat ` U ) |
|
| setcid.o | |- .1. = ( Id ` C ) |
||
| setcid.u | |- ( ph -> U e. V ) |
||
| setcid.x | |- ( ph -> X e. U ) |
||
| Assertion | setcid | |- ( ph -> ( .1. ` X ) = ( _I |` X ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | setccat.c | |- C = ( SetCat ` U ) |
|
| 2 | setcid.o | |- .1. = ( Id ` C ) |
|
| 3 | setcid.u | |- ( ph -> U e. V ) |
|
| 4 | setcid.x | |- ( ph -> X e. U ) |
|
| 5 | 1 | setccatid | |- ( U e. V -> ( C e. Cat /\ ( Id ` C ) = ( x e. U |-> ( _I |` x ) ) ) ) |
| 6 | 3 5 | syl | |- ( ph -> ( C e. Cat /\ ( Id ` C ) = ( x e. U |-> ( _I |` x ) ) ) ) |
| 7 | 6 | simprd | |- ( ph -> ( Id ` C ) = ( x e. U |-> ( _I |` x ) ) ) |
| 8 | 2 7 | eqtrid | |- ( ph -> .1. = ( x e. U |-> ( _I |` x ) ) ) |
| 9 | simpr | |- ( ( ph /\ x = X ) -> x = X ) |
|
| 10 | 9 | reseq2d | |- ( ( ph /\ x = X ) -> ( _I |` x ) = ( _I |` X ) ) |
| 11 | 4 | resiexd | |- ( ph -> ( _I |` X ) e. _V ) |
| 12 | 8 10 4 11 | fvmptd | |- ( ph -> ( .1. ` X ) = ( _I |` X ) ) |