This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The morphisms between extensible structures are mappings between their base sets. (Contributed by AV, 7-Mar-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | estrcbas.c | |- C = ( ExtStrCat ` U ) |
|
| estrcbas.u | |- ( ph -> U e. V ) |
||
| estrchomfval.h | |- H = ( Hom ` C ) |
||
| estrchom.x | |- ( ph -> X e. U ) |
||
| estrchom.y | |- ( ph -> Y e. U ) |
||
| estrchom.a | |- A = ( Base ` X ) |
||
| estrchom.b | |- B = ( Base ` Y ) |
||
| Assertion | estrchom | |- ( ph -> ( X H Y ) = ( B ^m A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | estrcbas.c | |- C = ( ExtStrCat ` U ) |
|
| 2 | estrcbas.u | |- ( ph -> U e. V ) |
|
| 3 | estrchomfval.h | |- H = ( Hom ` C ) |
|
| 4 | estrchom.x | |- ( ph -> X e. U ) |
|
| 5 | estrchom.y | |- ( ph -> Y e. U ) |
|
| 6 | estrchom.a | |- A = ( Base ` X ) |
|
| 7 | estrchom.b | |- B = ( Base ` Y ) |
|
| 8 | 1 2 3 | estrchomfval | |- ( ph -> H = ( x e. U , y e. U |-> ( ( Base ` y ) ^m ( Base ` x ) ) ) ) |
| 9 | fveq2 | |- ( y = Y -> ( Base ` y ) = ( Base ` Y ) ) |
|
| 10 | fveq2 | |- ( x = X -> ( Base ` x ) = ( Base ` X ) ) |
|
| 11 | 9 10 | oveqan12rd | |- ( ( x = X /\ y = Y ) -> ( ( Base ` y ) ^m ( Base ` x ) ) = ( ( Base ` Y ) ^m ( Base ` X ) ) ) |
| 12 | 7 6 | oveq12i | |- ( B ^m A ) = ( ( Base ` Y ) ^m ( Base ` X ) ) |
| 13 | 11 12 | eqtr4di | |- ( ( x = X /\ y = Y ) -> ( ( Base ` y ) ^m ( Base ` x ) ) = ( B ^m A ) ) |
| 14 | 13 | adantl | |- ( ( ph /\ ( x = X /\ y = Y ) ) -> ( ( Base ` y ) ^m ( Base ` x ) ) = ( B ^m A ) ) |
| 15 | ovexd | |- ( ph -> ( B ^m A ) e. _V ) |
|
| 16 | 8 14 4 5 15 | ovmpod | |- ( ph -> ( X H Y ) = ( B ^m A ) ) |