This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma 6 for funcestrcsetc . (Contributed by AV, 23-Mar-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | funcestrcsetc.e | |- E = ( ExtStrCat ` U ) |
|
| funcestrcsetc.s | |- S = ( SetCat ` U ) |
||
| funcestrcsetc.b | |- B = ( Base ` E ) |
||
| funcestrcsetc.c | |- C = ( Base ` S ) |
||
| funcestrcsetc.u | |- ( ph -> U e. WUni ) |
||
| funcestrcsetc.f | |- ( ph -> F = ( x e. B |-> ( Base ` x ) ) ) |
||
| funcestrcsetc.g | |- ( ph -> G = ( x e. B , y e. B |-> ( _I |` ( ( Base ` y ) ^m ( Base ` x ) ) ) ) ) |
||
| funcestrcsetc.m | |- M = ( Base ` X ) |
||
| funcestrcsetc.n | |- N = ( Base ` Y ) |
||
| Assertion | funcestrcsetclem6 | |- ( ( ph /\ ( X e. B /\ Y e. B ) /\ H e. ( N ^m M ) ) -> ( ( X G Y ) ` H ) = H ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funcestrcsetc.e | |- E = ( ExtStrCat ` U ) |
|
| 2 | funcestrcsetc.s | |- S = ( SetCat ` U ) |
|
| 3 | funcestrcsetc.b | |- B = ( Base ` E ) |
|
| 4 | funcestrcsetc.c | |- C = ( Base ` S ) |
|
| 5 | funcestrcsetc.u | |- ( ph -> U e. WUni ) |
|
| 6 | funcestrcsetc.f | |- ( ph -> F = ( x e. B |-> ( Base ` x ) ) ) |
|
| 7 | funcestrcsetc.g | |- ( ph -> G = ( x e. B , y e. B |-> ( _I |` ( ( Base ` y ) ^m ( Base ` x ) ) ) ) ) |
|
| 8 | funcestrcsetc.m | |- M = ( Base ` X ) |
|
| 9 | funcestrcsetc.n | |- N = ( Base ` Y ) |
|
| 10 | 1 2 3 4 5 6 7 8 9 | funcestrcsetclem5 | |- ( ( ph /\ ( X e. B /\ Y e. B ) ) -> ( X G Y ) = ( _I |` ( N ^m M ) ) ) |
| 11 | 10 | 3adant3 | |- ( ( ph /\ ( X e. B /\ Y e. B ) /\ H e. ( N ^m M ) ) -> ( X G Y ) = ( _I |` ( N ^m M ) ) ) |
| 12 | 11 | fveq1d | |- ( ( ph /\ ( X e. B /\ Y e. B ) /\ H e. ( N ^m M ) ) -> ( ( X G Y ) ` H ) = ( ( _I |` ( N ^m M ) ) ` H ) ) |
| 13 | fvresi | |- ( H e. ( N ^m M ) -> ( ( _I |` ( N ^m M ) ) ` H ) = H ) |
|
| 14 | 13 | 3ad2ant3 | |- ( ( ph /\ ( X e. B /\ Y e. B ) /\ H e. ( N ^m M ) ) -> ( ( _I |` ( N ^m M ) ) ` H ) = H ) |
| 15 | 12 14 | eqtrd | |- ( ( ph /\ ( X e. B /\ Y e. B ) /\ H e. ( N ^m M ) ) -> ( ( X G Y ) ` H ) = H ) |