This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The composition of a 1-1 function with a finitely supported function is finitely supported. (Contributed by AV, 28-May-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fsuppco.f | |- ( ph -> F finSupp Z ) |
|
| fsuppco.g | |- ( ph -> G : X -1-1-> Y ) |
||
| fsuppco.z | |- ( ph -> Z e. W ) |
||
| fsuppco.v | |- ( ph -> F e. V ) |
||
| Assertion | fsuppco | |- ( ph -> ( F o. G ) finSupp Z ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fsuppco.f | |- ( ph -> F finSupp Z ) |
|
| 2 | fsuppco.g | |- ( ph -> G : X -1-1-> Y ) |
|
| 3 | fsuppco.z | |- ( ph -> Z e. W ) |
|
| 4 | fsuppco.v | |- ( ph -> F e. V ) |
|
| 5 | df-f1 | |- ( G : X -1-1-> Y <-> ( G : X --> Y /\ Fun `' G ) ) |
|
| 6 | 5 | simprbi | |- ( G : X -1-1-> Y -> Fun `' G ) |
| 7 | 2 6 | syl | |- ( ph -> Fun `' G ) |
| 8 | cofunex2g | |- ( ( F e. V /\ Fun `' G ) -> ( F o. G ) e. _V ) |
|
| 9 | 4 7 8 | syl2anc | |- ( ph -> ( F o. G ) e. _V ) |
| 10 | suppimacnv | |- ( ( ( F o. G ) e. _V /\ Z e. W ) -> ( ( F o. G ) supp Z ) = ( `' ( F o. G ) " ( _V \ { Z } ) ) ) |
|
| 11 | 9 3 10 | syl2anc | |- ( ph -> ( ( F o. G ) supp Z ) = ( `' ( F o. G ) " ( _V \ { Z } ) ) ) |
| 12 | suppimacnv | |- ( ( F e. V /\ Z e. W ) -> ( F supp Z ) = ( `' F " ( _V \ { Z } ) ) ) |
|
| 13 | 4 3 12 | syl2anc | |- ( ph -> ( F supp Z ) = ( `' F " ( _V \ { Z } ) ) ) |
| 14 | 1 | fsuppimpd | |- ( ph -> ( F supp Z ) e. Fin ) |
| 15 | 13 14 | eqeltrrd | |- ( ph -> ( `' F " ( _V \ { Z } ) ) e. Fin ) |
| 16 | 15 2 | fsuppcolem | |- ( ph -> ( `' ( F o. G ) " ( _V \ { Z } ) ) e. Fin ) |
| 17 | 11 16 | eqeltrd | |- ( ph -> ( ( F o. G ) supp Z ) e. Fin ) |
| 18 | fsuppimp | |- ( F finSupp Z -> ( Fun F /\ ( F supp Z ) e. Fin ) ) |
|
| 19 | 18 | simpld | |- ( F finSupp Z -> Fun F ) |
| 20 | 1 19 | syl | |- ( ph -> Fun F ) |
| 21 | f1fun | |- ( G : X -1-1-> Y -> Fun G ) |
|
| 22 | 2 21 | syl | |- ( ph -> Fun G ) |
| 23 | funco | |- ( ( Fun F /\ Fun G ) -> Fun ( F o. G ) ) |
|
| 24 | 20 22 23 | syl2anc | |- ( ph -> Fun ( F o. G ) ) |
| 25 | funisfsupp | |- ( ( Fun ( F o. G ) /\ ( F o. G ) e. _V /\ Z e. W ) -> ( ( F o. G ) finSupp Z <-> ( ( F o. G ) supp Z ) e. Fin ) ) |
|
| 26 | 24 9 3 25 | syl3anc | |- ( ph -> ( ( F o. G ) finSupp Z <-> ( ( F o. G ) supp Z ) e. Fin ) ) |
| 27 | 17 26 | mpbird | |- ( ph -> ( F o. G ) finSupp Z ) |