This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for fsuppco . Formula building theorem for finite supports: rearranging the index set. (Contributed by Stefan O'Rear, 21-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fsuppcolem.f | |- ( ph -> ( `' F " ( _V \ { Z } ) ) e. Fin ) |
|
| fsuppcolem.g | |- ( ph -> G : X -1-1-> Y ) |
||
| Assertion | fsuppcolem | |- ( ph -> ( `' ( F o. G ) " ( _V \ { Z } ) ) e. Fin ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fsuppcolem.f | |- ( ph -> ( `' F " ( _V \ { Z } ) ) e. Fin ) |
|
| 2 | fsuppcolem.g | |- ( ph -> G : X -1-1-> Y ) |
|
| 3 | cnvco | |- `' ( F o. G ) = ( `' G o. `' F ) |
|
| 4 | 3 | imaeq1i | |- ( `' ( F o. G ) " ( _V \ { Z } ) ) = ( ( `' G o. `' F ) " ( _V \ { Z } ) ) |
| 5 | imaco | |- ( ( `' G o. `' F ) " ( _V \ { Z } ) ) = ( `' G " ( `' F " ( _V \ { Z } ) ) ) |
|
| 6 | 4 5 | eqtri | |- ( `' ( F o. G ) " ( _V \ { Z } ) ) = ( `' G " ( `' F " ( _V \ { Z } ) ) ) |
| 7 | df-f1 | |- ( G : X -1-1-> Y <-> ( G : X --> Y /\ Fun `' G ) ) |
|
| 8 | 7 | simprbi | |- ( G : X -1-1-> Y -> Fun `' G ) |
| 9 | 2 8 | syl | |- ( ph -> Fun `' G ) |
| 10 | imafi | |- ( ( Fun `' G /\ ( `' F " ( _V \ { Z } ) ) e. Fin ) -> ( `' G " ( `' F " ( _V \ { Z } ) ) ) e. Fin ) |
|
| 11 | 9 1 10 | syl2anc | |- ( ph -> ( `' G " ( `' F " ( _V \ { Z } ) ) ) e. Fin ) |
| 12 | 6 11 | eqeltrid | |- ( ph -> ( `' ( F o. G ) " ( _V \ { Z } ) ) e. Fin ) |