This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Existence of a composition when the second member is one-to-one. (Contributed by NM, 8-Oct-2007)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cofunex2g | |- ( ( A e. V /\ Fun `' B ) -> ( A o. B ) e. _V ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnvexg | |- ( A e. V -> `' A e. _V ) |
|
| 2 | cofunexg | |- ( ( Fun `' B /\ `' A e. _V ) -> ( `' B o. `' A ) e. _V ) |
|
| 3 | 1 2 | sylan2 | |- ( ( Fun `' B /\ A e. V ) -> ( `' B o. `' A ) e. _V ) |
| 4 | cnvco | |- `' ( `' B o. `' A ) = ( `' `' A o. `' `' B ) |
|
| 5 | cocnvcnv2 | |- ( `' `' A o. `' `' B ) = ( `' `' A o. B ) |
|
| 6 | cocnvcnv1 | |- ( `' `' A o. B ) = ( A o. B ) |
|
| 7 | 4 5 6 | 3eqtrri | |- ( A o. B ) = `' ( `' B o. `' A ) |
| 8 | cnvexg | |- ( ( `' B o. `' A ) e. _V -> `' ( `' B o. `' A ) e. _V ) |
|
| 9 | 7 8 | eqeltrid | |- ( ( `' B o. `' A ) e. _V -> ( A o. B ) e. _V ) |
| 10 | 3 9 | syl | |- ( ( Fun `' B /\ A e. V ) -> ( A o. B ) e. _V ) |
| 11 | 10 | ancoms | |- ( ( A e. V /\ Fun `' B ) -> ( A o. B ) e. _V ) |