This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for fsumfldivdiag . (Contributed by Mario Carneiro, 10-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | fsumfldivdiag.1 | |- ( ph -> A e. RR ) |
|
| Assertion | fsumfldivdiaglem | |- ( ph -> ( ( n e. ( 1 ... ( |_ ` A ) ) /\ m e. ( 1 ... ( |_ ` ( A / n ) ) ) ) -> ( m e. ( 1 ... ( |_ ` A ) ) /\ n e. ( 1 ... ( |_ ` ( A / m ) ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fsumfldivdiag.1 | |- ( ph -> A e. RR ) |
|
| 2 | simprr | |- ( ( ph /\ ( n e. ( 1 ... ( |_ ` A ) ) /\ m e. ( 1 ... ( |_ ` ( A / n ) ) ) ) ) -> m e. ( 1 ... ( |_ ` ( A / n ) ) ) ) |
|
| 3 | 1 | adantr | |- ( ( ph /\ ( n e. ( 1 ... ( |_ ` A ) ) /\ m e. ( 1 ... ( |_ ` ( A / n ) ) ) ) ) -> A e. RR ) |
| 4 | simprl | |- ( ( ph /\ ( n e. ( 1 ... ( |_ ` A ) ) /\ m e. ( 1 ... ( |_ ` ( A / n ) ) ) ) ) -> n e. ( 1 ... ( |_ ` A ) ) ) |
|
| 5 | fznnfl | |- ( A e. RR -> ( n e. ( 1 ... ( |_ ` A ) ) <-> ( n e. NN /\ n <_ A ) ) ) |
|
| 6 | 3 5 | syl | |- ( ( ph /\ ( n e. ( 1 ... ( |_ ` A ) ) /\ m e. ( 1 ... ( |_ ` ( A / n ) ) ) ) ) -> ( n e. ( 1 ... ( |_ ` A ) ) <-> ( n e. NN /\ n <_ A ) ) ) |
| 7 | 4 6 | mpbid | |- ( ( ph /\ ( n e. ( 1 ... ( |_ ` A ) ) /\ m e. ( 1 ... ( |_ ` ( A / n ) ) ) ) ) -> ( n e. NN /\ n <_ A ) ) |
| 8 | 7 | simpld | |- ( ( ph /\ ( n e. ( 1 ... ( |_ ` A ) ) /\ m e. ( 1 ... ( |_ ` ( A / n ) ) ) ) ) -> n e. NN ) |
| 9 | 3 8 | nndivred | |- ( ( ph /\ ( n e. ( 1 ... ( |_ ` A ) ) /\ m e. ( 1 ... ( |_ ` ( A / n ) ) ) ) ) -> ( A / n ) e. RR ) |
| 10 | fznnfl | |- ( ( A / n ) e. RR -> ( m e. ( 1 ... ( |_ ` ( A / n ) ) ) <-> ( m e. NN /\ m <_ ( A / n ) ) ) ) |
|
| 11 | 9 10 | syl | |- ( ( ph /\ ( n e. ( 1 ... ( |_ ` A ) ) /\ m e. ( 1 ... ( |_ ` ( A / n ) ) ) ) ) -> ( m e. ( 1 ... ( |_ ` ( A / n ) ) ) <-> ( m e. NN /\ m <_ ( A / n ) ) ) ) |
| 12 | 2 11 | mpbid | |- ( ( ph /\ ( n e. ( 1 ... ( |_ ` A ) ) /\ m e. ( 1 ... ( |_ ` ( A / n ) ) ) ) ) -> ( m e. NN /\ m <_ ( A / n ) ) ) |
| 13 | 12 | simpld | |- ( ( ph /\ ( n e. ( 1 ... ( |_ ` A ) ) /\ m e. ( 1 ... ( |_ ` ( A / n ) ) ) ) ) -> m e. NN ) |
| 14 | 13 | nnred | |- ( ( ph /\ ( n e. ( 1 ... ( |_ ` A ) ) /\ m e. ( 1 ... ( |_ ` ( A / n ) ) ) ) ) -> m e. RR ) |
| 15 | 12 | simprd | |- ( ( ph /\ ( n e. ( 1 ... ( |_ ` A ) ) /\ m e. ( 1 ... ( |_ ` ( A / n ) ) ) ) ) -> m <_ ( A / n ) ) |
| 16 | 3 | recnd | |- ( ( ph /\ ( n e. ( 1 ... ( |_ ` A ) ) /\ m e. ( 1 ... ( |_ ` ( A / n ) ) ) ) ) -> A e. CC ) |
| 17 | 16 | mullidd | |- ( ( ph /\ ( n e. ( 1 ... ( |_ ` A ) ) /\ m e. ( 1 ... ( |_ ` ( A / n ) ) ) ) ) -> ( 1 x. A ) = A ) |
| 18 | 8 | nnge1d | |- ( ( ph /\ ( n e. ( 1 ... ( |_ ` A ) ) /\ m e. ( 1 ... ( |_ ` ( A / n ) ) ) ) ) -> 1 <_ n ) |
| 19 | 1red | |- ( ( ph /\ ( n e. ( 1 ... ( |_ ` A ) ) /\ m e. ( 1 ... ( |_ ` ( A / n ) ) ) ) ) -> 1 e. RR ) |
|
| 20 | 8 | nnred | |- ( ( ph /\ ( n e. ( 1 ... ( |_ ` A ) ) /\ m e. ( 1 ... ( |_ ` ( A / n ) ) ) ) ) -> n e. RR ) |
| 21 | 0red | |- ( ( ph /\ ( n e. ( 1 ... ( |_ ` A ) ) /\ m e. ( 1 ... ( |_ ` ( A / n ) ) ) ) ) -> 0 e. RR ) |
|
| 22 | 8 13 | nnmulcld | |- ( ( ph /\ ( n e. ( 1 ... ( |_ ` A ) ) /\ m e. ( 1 ... ( |_ ` ( A / n ) ) ) ) ) -> ( n x. m ) e. NN ) |
| 23 | 22 | nnred | |- ( ( ph /\ ( n e. ( 1 ... ( |_ ` A ) ) /\ m e. ( 1 ... ( |_ ` ( A / n ) ) ) ) ) -> ( n x. m ) e. RR ) |
| 24 | 22 | nngt0d | |- ( ( ph /\ ( n e. ( 1 ... ( |_ ` A ) ) /\ m e. ( 1 ... ( |_ ` ( A / n ) ) ) ) ) -> 0 < ( n x. m ) ) |
| 25 | 8 | nngt0d | |- ( ( ph /\ ( n e. ( 1 ... ( |_ ` A ) ) /\ m e. ( 1 ... ( |_ ` ( A / n ) ) ) ) ) -> 0 < n ) |
| 26 | lemuldiv2 | |- ( ( m e. RR /\ A e. RR /\ ( n e. RR /\ 0 < n ) ) -> ( ( n x. m ) <_ A <-> m <_ ( A / n ) ) ) |
|
| 27 | 14 3 20 25 26 | syl112anc | |- ( ( ph /\ ( n e. ( 1 ... ( |_ ` A ) ) /\ m e. ( 1 ... ( |_ ` ( A / n ) ) ) ) ) -> ( ( n x. m ) <_ A <-> m <_ ( A / n ) ) ) |
| 28 | 15 27 | mpbird | |- ( ( ph /\ ( n e. ( 1 ... ( |_ ` A ) ) /\ m e. ( 1 ... ( |_ ` ( A / n ) ) ) ) ) -> ( n x. m ) <_ A ) |
| 29 | 21 23 3 24 28 | ltletrd | |- ( ( ph /\ ( n e. ( 1 ... ( |_ ` A ) ) /\ m e. ( 1 ... ( |_ ` ( A / n ) ) ) ) ) -> 0 < A ) |
| 30 | lemul1 | |- ( ( 1 e. RR /\ n e. RR /\ ( A e. RR /\ 0 < A ) ) -> ( 1 <_ n <-> ( 1 x. A ) <_ ( n x. A ) ) ) |
|
| 31 | 19 20 3 29 30 | syl112anc | |- ( ( ph /\ ( n e. ( 1 ... ( |_ ` A ) ) /\ m e. ( 1 ... ( |_ ` ( A / n ) ) ) ) ) -> ( 1 <_ n <-> ( 1 x. A ) <_ ( n x. A ) ) ) |
| 32 | 18 31 | mpbid | |- ( ( ph /\ ( n e. ( 1 ... ( |_ ` A ) ) /\ m e. ( 1 ... ( |_ ` ( A / n ) ) ) ) ) -> ( 1 x. A ) <_ ( n x. A ) ) |
| 33 | 17 32 | eqbrtrrd | |- ( ( ph /\ ( n e. ( 1 ... ( |_ ` A ) ) /\ m e. ( 1 ... ( |_ ` ( A / n ) ) ) ) ) -> A <_ ( n x. A ) ) |
| 34 | ledivmul | |- ( ( A e. RR /\ A e. RR /\ ( n e. RR /\ 0 < n ) ) -> ( ( A / n ) <_ A <-> A <_ ( n x. A ) ) ) |
|
| 35 | 3 3 20 25 34 | syl112anc | |- ( ( ph /\ ( n e. ( 1 ... ( |_ ` A ) ) /\ m e. ( 1 ... ( |_ ` ( A / n ) ) ) ) ) -> ( ( A / n ) <_ A <-> A <_ ( n x. A ) ) ) |
| 36 | 33 35 | mpbird | |- ( ( ph /\ ( n e. ( 1 ... ( |_ ` A ) ) /\ m e. ( 1 ... ( |_ ` ( A / n ) ) ) ) ) -> ( A / n ) <_ A ) |
| 37 | 14 9 3 15 36 | letrd | |- ( ( ph /\ ( n e. ( 1 ... ( |_ ` A ) ) /\ m e. ( 1 ... ( |_ ` ( A / n ) ) ) ) ) -> m <_ A ) |
| 38 | fznnfl | |- ( A e. RR -> ( m e. ( 1 ... ( |_ ` A ) ) <-> ( m e. NN /\ m <_ A ) ) ) |
|
| 39 | 3 38 | syl | |- ( ( ph /\ ( n e. ( 1 ... ( |_ ` A ) ) /\ m e. ( 1 ... ( |_ ` ( A / n ) ) ) ) ) -> ( m e. ( 1 ... ( |_ ` A ) ) <-> ( m e. NN /\ m <_ A ) ) ) |
| 40 | 13 37 39 | mpbir2and | |- ( ( ph /\ ( n e. ( 1 ... ( |_ ` A ) ) /\ m e. ( 1 ... ( |_ ` ( A / n ) ) ) ) ) -> m e. ( 1 ... ( |_ ` A ) ) ) |
| 41 | 13 | nngt0d | |- ( ( ph /\ ( n e. ( 1 ... ( |_ ` A ) ) /\ m e. ( 1 ... ( |_ ` ( A / n ) ) ) ) ) -> 0 < m ) |
| 42 | lemuldiv | |- ( ( n e. RR /\ A e. RR /\ ( m e. RR /\ 0 < m ) ) -> ( ( n x. m ) <_ A <-> n <_ ( A / m ) ) ) |
|
| 43 | 20 3 14 41 42 | syl112anc | |- ( ( ph /\ ( n e. ( 1 ... ( |_ ` A ) ) /\ m e. ( 1 ... ( |_ ` ( A / n ) ) ) ) ) -> ( ( n x. m ) <_ A <-> n <_ ( A / m ) ) ) |
| 44 | 28 43 | mpbid | |- ( ( ph /\ ( n e. ( 1 ... ( |_ ` A ) ) /\ m e. ( 1 ... ( |_ ` ( A / n ) ) ) ) ) -> n <_ ( A / m ) ) |
| 45 | 3 13 | nndivred | |- ( ( ph /\ ( n e. ( 1 ... ( |_ ` A ) ) /\ m e. ( 1 ... ( |_ ` ( A / n ) ) ) ) ) -> ( A / m ) e. RR ) |
| 46 | fznnfl | |- ( ( A / m ) e. RR -> ( n e. ( 1 ... ( |_ ` ( A / m ) ) ) <-> ( n e. NN /\ n <_ ( A / m ) ) ) ) |
|
| 47 | 45 46 | syl | |- ( ( ph /\ ( n e. ( 1 ... ( |_ ` A ) ) /\ m e. ( 1 ... ( |_ ` ( A / n ) ) ) ) ) -> ( n e. ( 1 ... ( |_ ` ( A / m ) ) ) <-> ( n e. NN /\ n <_ ( A / m ) ) ) ) |
| 48 | 8 44 47 | mpbir2and | |- ( ( ph /\ ( n e. ( 1 ... ( |_ ` A ) ) /\ m e. ( 1 ... ( |_ ` ( A / n ) ) ) ) ) -> n e. ( 1 ... ( |_ ` ( A / m ) ) ) ) |
| 49 | 40 48 | jca | |- ( ( ph /\ ( n e. ( 1 ... ( |_ ` A ) ) /\ m e. ( 1 ... ( |_ ` ( A / n ) ) ) ) ) -> ( m e. ( 1 ... ( |_ ` A ) ) /\ n e. ( 1 ... ( |_ ` ( A / m ) ) ) ) ) |
| 50 | 49 | ex | |- ( ph -> ( ( n e. ( 1 ... ( |_ ` A ) ) /\ m e. ( 1 ... ( |_ ` ( A / n ) ) ) ) -> ( m e. ( 1 ... ( |_ ` A ) ) /\ n e. ( 1 ... ( |_ ` ( A / m ) ) ) ) ) ) |