This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The right-hand side of dvdsflsumcom is commutative in the variables, because it can be written as the manifestly symmetric sum over those <. m , n >. such that m x. n <_ A . (Contributed by Mario Carneiro, 4-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fsumfldivdiag.1 | |- ( ph -> A e. RR ) |
|
| fsumfldivdiag.2 | |- ( ( ph /\ ( n e. ( 1 ... ( |_ ` A ) ) /\ m e. ( 1 ... ( |_ ` ( A / n ) ) ) ) ) -> B e. CC ) |
||
| Assertion | fsumfldivdiag | |- ( ph -> sum_ n e. ( 1 ... ( |_ ` A ) ) sum_ m e. ( 1 ... ( |_ ` ( A / n ) ) ) B = sum_ m e. ( 1 ... ( |_ ` A ) ) sum_ n e. ( 1 ... ( |_ ` ( A / m ) ) ) B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fsumfldivdiag.1 | |- ( ph -> A e. RR ) |
|
| 2 | fsumfldivdiag.2 | |- ( ( ph /\ ( n e. ( 1 ... ( |_ ` A ) ) /\ m e. ( 1 ... ( |_ ` ( A / n ) ) ) ) ) -> B e. CC ) |
|
| 3 | fzfid | |- ( ph -> ( 1 ... ( |_ ` A ) ) e. Fin ) |
|
| 4 | fzfid | |- ( ( ph /\ n e. ( 1 ... ( |_ ` A ) ) ) -> ( 1 ... ( |_ ` ( A / n ) ) ) e. Fin ) |
|
| 5 | 1 | fsumfldivdiaglem | |- ( ph -> ( ( n e. ( 1 ... ( |_ ` A ) ) /\ m e. ( 1 ... ( |_ ` ( A / n ) ) ) ) -> ( m e. ( 1 ... ( |_ ` A ) ) /\ n e. ( 1 ... ( |_ ` ( A / m ) ) ) ) ) ) |
| 6 | 1 | fsumfldivdiaglem | |- ( ph -> ( ( m e. ( 1 ... ( |_ ` A ) ) /\ n e. ( 1 ... ( |_ ` ( A / m ) ) ) ) -> ( n e. ( 1 ... ( |_ ` A ) ) /\ m e. ( 1 ... ( |_ ` ( A / n ) ) ) ) ) ) |
| 7 | 5 6 | impbid | |- ( ph -> ( ( n e. ( 1 ... ( |_ ` A ) ) /\ m e. ( 1 ... ( |_ ` ( A / n ) ) ) ) <-> ( m e. ( 1 ... ( |_ ` A ) ) /\ n e. ( 1 ... ( |_ ` ( A / m ) ) ) ) ) ) |
| 8 | 3 3 4 7 2 | fsumcom2 | |- ( ph -> sum_ n e. ( 1 ... ( |_ ` A ) ) sum_ m e. ( 1 ... ( |_ ` ( A / n ) ) ) B = sum_ m e. ( 1 ... ( |_ ` A ) ) sum_ n e. ( 1 ... ( |_ ` ( A / m ) ) ) B ) |