This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Disjointness of the upper integers and a finite sequence. (Contributed by Mario Carneiro, 30-Jun-2013) (Revised by Mario Carneiro, 24-Aug-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fznuz | |- ( K e. ( M ... N ) -> -. K e. ( ZZ>= ` ( N + 1 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfzle2 | |- ( K e. ( M ... N ) -> K <_ N ) |
|
| 2 | elfzel2 | |- ( K e. ( M ... N ) -> N e. ZZ ) |
|
| 3 | eluzp1l | |- ( ( N e. ZZ /\ K e. ( ZZ>= ` ( N + 1 ) ) ) -> N < K ) |
|
| 4 | 3 | ex | |- ( N e. ZZ -> ( K e. ( ZZ>= ` ( N + 1 ) ) -> N < K ) ) |
| 5 | 2 4 | syl | |- ( K e. ( M ... N ) -> ( K e. ( ZZ>= ` ( N + 1 ) ) -> N < K ) ) |
| 6 | elfzelz | |- ( K e. ( M ... N ) -> K e. ZZ ) |
|
| 7 | zre | |- ( N e. ZZ -> N e. RR ) |
|
| 8 | zre | |- ( K e. ZZ -> K e. RR ) |
|
| 9 | ltnle | |- ( ( N e. RR /\ K e. RR ) -> ( N < K <-> -. K <_ N ) ) |
|
| 10 | 7 8 9 | syl2an | |- ( ( N e. ZZ /\ K e. ZZ ) -> ( N < K <-> -. K <_ N ) ) |
| 11 | 2 6 10 | syl2anc | |- ( K e. ( M ... N ) -> ( N < K <-> -. K <_ N ) ) |
| 12 | 5 11 | sylibd | |- ( K e. ( M ... N ) -> ( K e. ( ZZ>= ` ( N + 1 ) ) -> -. K <_ N ) ) |
| 13 | 1 12 | mt2d | |- ( K e. ( M ... N ) -> -. K e. ( ZZ>= ` ( N + 1 ) ) ) |