This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The sum of constant terms ( k is not free in C ) over an index set excluding a singleton. (Contributed by AV, 7-Jan-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fsumdifsnconst | |- ( ( A e. Fin /\ B e. A /\ C e. CC ) -> sum_ k e. ( A \ { B } ) C = ( ( ( # ` A ) - 1 ) x. C ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | diffi | |- ( A e. Fin -> ( A \ { B } ) e. Fin ) |
|
| 2 | 1 | anim1i | |- ( ( A e. Fin /\ C e. CC ) -> ( ( A \ { B } ) e. Fin /\ C e. CC ) ) |
| 3 | 2 | 3adant2 | |- ( ( A e. Fin /\ B e. A /\ C e. CC ) -> ( ( A \ { B } ) e. Fin /\ C e. CC ) ) |
| 4 | fsumconst | |- ( ( ( A \ { B } ) e. Fin /\ C e. CC ) -> sum_ k e. ( A \ { B } ) C = ( ( # ` ( A \ { B } ) ) x. C ) ) |
|
| 5 | 3 4 | syl | |- ( ( A e. Fin /\ B e. A /\ C e. CC ) -> sum_ k e. ( A \ { B } ) C = ( ( # ` ( A \ { B } ) ) x. C ) ) |
| 6 | hashdifsn | |- ( ( A e. Fin /\ B e. A ) -> ( # ` ( A \ { B } ) ) = ( ( # ` A ) - 1 ) ) |
|
| 7 | 6 | 3adant3 | |- ( ( A e. Fin /\ B e. A /\ C e. CC ) -> ( # ` ( A \ { B } ) ) = ( ( # ` A ) - 1 ) ) |
| 8 | 7 | oveq1d | |- ( ( A e. Fin /\ B e. A /\ C e. CC ) -> ( ( # ` ( A \ { B } ) ) x. C ) = ( ( ( # ` A ) - 1 ) x. C ) ) |
| 9 | 5 8 | eqtrd | |- ( ( A e. Fin /\ B e. A /\ C e. CC ) -> sum_ k e. ( A \ { B } ) C = ( ( ( # ` A ) - 1 ) x. C ) ) |